Propagation of Ion-acoustic Shocks in Electron-positron-ion Magnetoplasmas with Non-extensivity and Rotational Effects


  • N. Imtiaz PINSTECH, P.O.Nilore, Islamabad
  • S. Hussain PINSTECH, P.O.Nilore, Islamabad
  • Q. Haque PINSTECH, P.O.Nilore, Islamabad


Nonlinear electrostatic shock structures in dissipative magneto-rotating electron-positron-ion (e-p-i) plasmas with warm ions, non-thermal electrons and positrons following the q-nonextensive velocity distribution are investigated. The Korteweg de Vries Burger (KdVB) equation which describes the dynamics of the nonlinear shock structures is derived by using small amplitude reductive perturbation technique. The quantitative analysis of different physical parameters on the shock structures is presented here. It is found that the shock structures are sensitive to the Coriolis force, obliqueness, entropic indices of electrons and positrons (qe and qp), ions temperature, positrons temperature and to the positrons concentration. This study would be helpful to understand the dynamics of the shock structures in the subextensive and superextensive plasmas with warm ions such as astrophysical and space environment.

Author Biographies

N. Imtiaz, PINSTECH, P.O.Nilore, Islamabad

Theoretical Physics Division

S. Hussain, PINSTECH, P.O.Nilore, Islamabad

Theoretical Physics Division




Q. Haque, PINSTECH, P.O.Nilore, Islamabad

Theoretical Physics Division


F.F. Chen, “Introduction to plasma physics and controlled fusion”, 1st edition, (Plenum, New York), 1974.

R. A. Treumann and W. Baumjohann, “Basic space plasma physics”, Imperial College Press, London, 1997.

H. Washimi and T. Tanuiti ”Propagation of ion-acoustic solitary waves of small amplitude”, Phys. Rev. Lett., vol. 17, pp. 996-998, 1966.

P.O. Dovner, A.I. Eriksson, R. Bostrom and B. Holback, “Freja multiprobe observations of electrostatic solitary structures”, Geophys. Res. Lett., vol. 21, pp. 1827–1834, 1994.

R. A. Cairns, A. A. Mamun, R. Bingham, R. Bostram, R.O. Dendy, C.M.C. Nairn, and P.K. Shukla, “Electrostatic solitary structures in non-thermal plasmas”, Geophys. Res. Lett., vol. 22, pp.2709-2712, 1995.

M. P. Leubner, “Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions”, Phys. Plasmas, vol. 11, pp.1306–1308, 2004.

J.A.S. Lima, R. Silva, and Santos, “Plasma oscillations and nonextensive statistics”, J. Phys. Rev. E, vol. 61, pp. 3260–3263, 2000.

C. Tsallis, Chaos, “Some comments on Boltzmann-Gibbs statistical mechanics”, Solitons Fractals, vol. 6, pp. 561-567, 1995.

C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics”, J. Stat. Phys., vol. 52, pp. 479–487, 1988.

W. H. Lee, E. Ramirez-Ruiz and D. Page, “Dynamical evolution of neutrino-cooled accretion disks: detailed microphysics, Lepton-driven convection, and global energetic”, The Astrophysical Journal, vol. 632, pp. 421-437, 2005.

H. R. Miller and P.J. Witta, “Active galactic nuclei”, (Springer-Verlag, Berlin), pp. 202, 1987.

K. Javidan, “Cylindrical and spherical ion acoustic solitary waves in electron-positron-ion plasmas with superthermal electrons”, Astrophys. Space Sci, vol. 343, pp. 667-673, 2013.

El-Awady, El-Tantawy, S. A., Moslem, W. M., and P. K. Shukla, “Electron–positron–ion plasma with kappa distribution: Ion acoustic soliton propagation”, Phys. Lett. A, vol. 374, pp. 3216-3219, 2010.

H. R. Pakzad, “Ion acoustic solitary waves in a weakly relativistic plasma with q-nonextensive electrons and thermal positrons”, Astrophys. Space Sci., vol. 334, pp. 337-343, 2011.

S.I. Popel, S.V. Vladimirov and P.K. Shukla, “Ion‐acoustic solitons in electron–positron–ion plasmas”, Phys. Plasmas, vol. 2, pp. 716–719, 1995.

Q. Haque, H. Saleem and J. Vranjes, “Electromagnetic vortices in electron-positron-ion plasma with shear flow”, Phys. Plasmas, vol. 9, pp. 474–479, 2002.

Q. Haque and H. Saleem, ”Nonlinear dust drift Alfven waves in rotating planetary magnetospheres”, Phys. Plasmas, vol. 13, 102901, pp. 1-4, 2006.

S. Hussain, H.U. Rehman and S. Mahmood, “Obliquely propagating solitary wave structures in nonextensive magneto-rotating plasmas”, Astrophys. Sp. Sci., vol. 350, pp. 185-190, 2013.

W. Masood, H. Rizvi, H. Hasnain, and Q. Haque, “Rotation induced nonlinear dispersive dust drift waves can be the progenitors of spokes”, Phys. Plasmas, vol. 19, 032112, pp. 1-6, 2012.

H. Saleem and Q. Haque, “Rotation induced dust drift waves in planetary magnetospheres”, JGR, vol. 109, A11206, pp. 1-4, 2004.

G.F. Chew, M.L. Goldberger and F.E. Low, “The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions”, Proc. R. Soc. London A, 236, pp. 112-118, 1956.

I. Alexeff, W.D. Jones, and K. Lonngren, “Excitation of Pseudowaves in Plasma via a Grid” Phys. Rev. Lett., vol. 21, pp. 878–881, 1968.

M. Adnan, G. Williams, A. Qamar, S. Mahmood and I. Kourakis, “Pressure anisotropy effects on nonlinear electrostatic excitations in magnetized electron-positron-ion plasmas”, Eur. Phys. J. D, vol. 68, pp. 247, 2014.

M. Adnan, S. Mahmood and A. Qamar, “Effect of anisotropic ion pressure on solitary waves in magnetized dusty plasmas”, Cont. to Plasma Phys., vol. 54, 724–734, 2014. [25] A. Mushtaq, “Ion acoustic solitary waves in magneto-rotating plasmas”, J. Phys. A: Mathematical and Theoretical, vol. 43, 315501, pp. 1-5, 2010.




How to Cite

N. Imtiaz, S. Hussain, and Q. Haque, “Propagation of Ion-acoustic Shocks in Electron-positron-ion Magnetoplasmas with Non-extensivity and Rotational Effects”, The Nucleus, vol. 53, no. 2, pp. 114–120, Nov. 2017.




Most read articles by the same author(s)