Quantum Information Processing with Alkali Atoms: A Narrative Review
DOI:
https://doi.org/10.71330/thenucleus.2026.1495Abstract
Quantum information processing is a promising way that deals with the aspects of superposition, entanglement, computation using coherence, communication, and sensing. This review is an analysis of how alkali Rydberg atoms can be used in quantum information processing. The leading candidates are the alkali atoms, as they have a simple electronic structure, transitions that are well characterized, and which can be laser-cooled and trapped. Important mechanisms, such as EIT, dipole-dipole interactions, and Rydberg blockade, are necessary to achieve high-fidelity quantum gates, photon-photon interactions, and long-lived quantum memories. Experimental devices such as magneto-optical traps, optical tweezers, optical lattices, and warm vapor cells have made it possible to use a controllable atom-photon interface and scalable architecture. In the recent development of laser and microwave control methods, the time of coherence, state-transfer, and single-atom addressability have been enhanced. Such challenges include decoherence due to spontaneous emission, motional dephasing, and technical issues in trapping stability and laser linewidth. This review concludes that alkali Rydberg atoms, especially rubidium and cesium, are of relevance in scalable fault-tolerant quantum computing and quantum simulation, and represent the meeting of basic quantum science with new technology uses.
References
S. Xiao-Qiang, S. Shi-Lei, L. Lin, R. Nath, J. H. Wu, and W. Li, “Rydberg superatoms: An artificial quantum system for quantum information processing and quantum optics,” Appl. Phys. Rev., vol. 11, no. 3, p. 031320, 2024.
M. Xue, S. Xu, X. Li, and X. Liang, “High-fidelity and robust controlled-Z gates implemented with Rydberg atoms via echoing rapid adiabatic passage,” Phys. Rev. A, vol. 110, no. 3, p. 032619, 2024.
K. Singh, S. Anand, A. Pocklington, J. T. Kemp, and H. Bernien, “Dual-Element, Two-Dimensional Atom Array with Continuous-Mode Operation,” Phys. Rev. X, vol. 12, no. 1, p. 011040, 2022.
E. Gómez-López, K. Winkler, J. Jurkat, M. Meinecke, J. Wolters, T. Huber-Loyola, S. Höfling, O. Benson, D. F. Figer, and M. Reimer, “Atomic vapor quantum memory for on-demand semiconductor single photon sources,” in Proc. Photonics for Quantum 2023, Rochester, NY, USA, Jun. 5–8, 2023, pp. 14–23, SPIE, 2023.
P. M. Burdekin, I. Maillette de Buy Wenniger, S. Sagona-Stophel, J. Szuniewicz, A. Zhang, S. E. Thomas, and I. A. Walmsley, “Enhancing quantum memories with light-matter interference,” arXiv preprint arXiv: 2411.17365, 2024.
H. B. Zhang, Y. Tang, and Y. C. Liu, “Nuclear spin induced transparency,” Phys. Rev. Research, vol. 7, no. 1, p. L012069, 2025.
M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys., vol. 82, no. 3, pp. 2313–2363, 2010.
T. Chen, X. Li, F. Zhang, L. Wang, and Y. Zhao, “Quantum walks and correlated dynamics in an interacting synthetic Rydberg lattice,” Phys. Rev. Lett., vol. 133, no. 12, p. 120604, 2024.
N. Reinić, S. Müller, D. Schuster, E. Kovacs, and M. Lang, “Finite-temperature Rydberg arrays: Quantum phases and entanglement characterization,” Phys. Rev. Research, vol. 6, no. 3, p. 033322, 2024.
L. Homeier, M. Chen, J. Fischer, and P. Klein, “Supersolidity in Rydberg tweezer arrays,” Phys. Rev. A, vol. 111, no. 1, p. L011305, 2025.
M. Norcia, L. Zhang, S. Ivanov, and T. Keller, “Iterative assembly of 171 Yb atom arrays with cavity-enhanced optical lattices,” PRX Quantum, vol. 5, no. 3, p. 030316, 2024.
P. N. T. Lloyd and R. Bekenstein, “Single atomic layer quantum holography,” Phys. Rev. Research, vol. 7, no. 2, p. L022014, 2025.
L. Yang et al., “Rapid preparation of Rydberg superatom W state using superadiabatic techniques,” Acta Phys. Sin., vol. 74, no. 10, pp. 100305‑1–100305‑9, 2025.
A. Bhowmik and D. Blume, “Forces on alkali Rydberg atoms due to nonlinearly polarized light,” Phys. Rev. A, vol. 111, no. 5, p. 053120, 2025.
H. J. Manetsch, L. Müller, D. Kim, and E. Rossi, “A tweezer array with 6100 highly coherent atomic qubits,” arXiv preprint arXiv: 2403. 12021, 2024.
A. Holman et al., “Trapping of single atoms in metasurface optical tweezer arrays,” arXiv preprint arXiv: 2411.05321, 2024.
Y. Torii Chew et al., “Ultra-precise holographic optical tweezers array,” arXiv preprint arXiv: 2407.20699, 2024.
T. Steckmann et al., “Error mitigation of shot-to-shot fluctuations in analog quantum simulators,” arXiv preprint arXiv: 2506.16509, 2025.
S. G. Menon et al., “An integrated atom array-nanophotonic chip platform with background-free imaging,” Nat. Commun., vol. 15, no. 1, p. 6156, 2024.
J. Sinclair et al., “Fault-tolerant optical interconnects for neutral-atom arrays,” Phys. Rev. Research, vol. 7, no. 1, p. 013313, 2025.
G. Higgins et al., “Single strontium Rydberg ion confined in a Paul trap,” Phys. Rev. X, vol. 7, no. 2, p. 021038, 2017.
B. Hezel, M. Mayle, and P. Schmelcher, “Interaction-induced stabilization of circular Rydberg atoms,” Phys. Rev. A, vol. 84, no. 6, p. 063402, 2011.
S. Anand et al., “A dual-species Rydberg array,” Nat. Phys., vol. 20, no. 11, pp. 1744–1750, 2024.
V. Crescimanna et al., “Quantum control of Rydberg atoms for mesoscopic quantum state and circuit preparation,” Phys. Rev. Appl., vol. 20, no. 3, p. 034019, 2023.
F. Cesa and H. Pichler, “Universal quantum computation in globally driven Rydberg atom arrays,” Phys. Rev. Lett., vol. 131, no. 17, p. 170601, 2023.
M. Londoño et al., “Ultracold long-range van der Waals Rydberg trimer,” Commun. Phys., vol. 8, p. 232, 2025.
G. Giudici et al., “Fast entangling gates for Rydberg atoms via resonant dipole-dipole interaction,” PRX Quantum, vol. 6, no. 3, p. 030308, 2025.
J. Kumlin et al., “Quantum optics with Rydberg superatoms,” J. Phys. Commun., vol. 7, no. 5, p. 052001, 2023.
M. Rashid, H. Maarten, and J. Yasir, “C-NOT gate based on ultracold Rydberg atom interactions,” Sci. China Phys. Mech. Astron., vol. 56, no. 11, pp. 2134–2137, 2013.
E. Brekke and C. Umland, “Rydberg excitation through detuned microwave transition in rubidium,” J. Opt. Soc. Am. B, vol. 40, no. 11, pp. 2758–2761, 2023.
N. D. Gomes et al., “Microwave spectroscopy assisted by electromagnetically induced transparency near natural Förster resonance on rubidium,” Results Phys., vol. 68, p. 108081, 2025.
H. Shen and J. Zhang, “Entanglement-enhanced quantum metrology with neutral atom arrays,” Natl. Sci. Rev., vol. 12, no. 8, pp. 1–3, 2025.
X.-F. Shi, “Rydberg quantum gates free from blockade error,” Phys. Rev. Appl., vol. 7, no. 6, Art. no. 064017, Jun. 2017.
S. K. Barik et al., “Quantum technologies with Rydberg atoms,” Front. Quantum Sci. Technol., vol. 3, Art. no. 1426216, pp. 1–6, 2024.
Y. Ming, Z.-X. Fu, and Y.-X. Du, “New-type geometric gates in atomic arrays without Rydberg blockade,” arXiv preprint arXiv: 2412.19193, 2024.
D. Kurdak et al., “Enhancement of Rydberg blockade via microwave dressing,” Phys. Rev. Lett., vol. 134, no. 12, p. 123404, 2025.
Z.-Y. An et al., “Entangling two Rydberg superatoms via heralded storage,” Phys. Rev. Lett., vol. 134, no. 23, p. 230803, 2025.
C. Apostoli et al., “Unraveling open quantum dynamics with time-dependent variational Monte Carlo,” arXiv preprint arXiv: 2506.23928, 2025.
E. Butery et al., “Sub-Doppler spectroscopy of Rydberg atoms via velocity selection memory in a hot vapor cell,” Opt. Lett., vol. 50, no. 2, pp. 578–581, 2025.
S. Xu et al., “Efficient generation of multiqubit entanglement states using rapid adiabatic passage,” Phys. Rev. A, vol. 110, no. 2, p. 023108, 2024.
T. Firdoshi et al., Six-wave mixing of optical and microwave fields using Rydberg excitations in thermal atomic vapor. arXiv preprint arXiv:2207.01835, 2022.
Y. Liang et al., “Cavity-enhanced Rydberg atomic superheterodyne receiver,” Opt. Express, vol. 33, no. 6, pp. 13034–13039, 2025.
K. Mukherjee et al., “Automated quantum system modeling with machine learning,” Quantum Sci. Technol., vol. 10, no. 2, p. 02LT01, 2025.
K. Wang et al., “Enriching the quantum toolbox of ultracold molecules with Rydberg atoms,” PRX Quantum, vol. 3, no. 3, p. 030339, 2022.
I. Cong et al., “Hardware-efficient, fault-tolerant quantum computation with Rydberg atoms,” Phys. Rev. X, vol. 12, no. 2, p. 021049, 2022.
W. Yang et al., “RF E-field enhanced sensing based on Rydberg-atom-based superheterodyne receiver,” arXiv preprint arXiv:2401.01663, 2024.
M. Jing et al., “Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy,” Nat. Phys., vol. 16, no. 9, pp. 911–915, 2020.
T. Gong et al., “Rydberg atomic quantum receivers for classical wireless communication and sensing,” IEEE Wireless Commun., vol. 32, no. 5, pp. 90–100, 2025.
D. H. Meyer et al., “Digital communication with Rydberg atoms and amplitude-modulated microwave fields,” Appl. Phys. Lett., vol. 112, no. 21, p. 211108, 2018.
S. Borówka et al., “Rydberg-atom-based system for benchmarking millimeter-wave automotive radar chips,” Phys. Rev. Appl., vol. 22, no. 3, p. 034067, 2024.
H.-T. Tu et al., “Approaching the standard quantum limit of a Rydberg-atom microwave electrometer,” Science Adv., vol. 10, no. 51, p. eads0683, 2024.
S. Berweger et al., “Closed-loop quantum interferometry for phase-resolved Rydberg-atom field sensing,” Phys. Rev. Appl., vol. 20, no. 5, p. 054009, 2023.
I. I. Ryabtsev et al., “Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information,” Phys.-Usp., vol. 59, no. 2, p. 196, 2016.
N. Šantić et al., “Cooling of atoms using an optical frequency comb,” Sci. Rep., vol. 9, no. 1, p. 2510, 2019.
C. S. Adams, J. D. Pritchard, and J. P. Shaffer, “Rydberg atom quantum technologies,” J. Phys. B: At. Mol. Opt. Phys., vol. 53, no. 1, p. 012002, 2019.
A. Vylegzhanin et al., “Excitation of 87Rb Rydberg atoms to n S and n D states (n ≤ 68) via an optical nanofiber,” Optica Quantum, vol. 1, no. 1, pp. 6–13, 2023.
A. Dunning et al., “Interferometric laser cooling of atomic rubidium,” Phys. Rev. Lett., vol. 115, no. 7, p. 073004, 2015.
H. Sabmannshausen, Frédéric Merkt, and Johannes Deiglmayr, “High-resolution spectroscopy of Rydberg states in an ultracold cesium gas,” Phys. Rev. A, vol. 87, no. 3, p. 032519, 2013.
H. Sabmannshausen, Frédéric Merkt, and Johannes Deiglmayr, “Pulsed excitation of Rydberg-atom-pair states in an ultracold Cs gas,” Phys. Rev. A, vol. 92, no. 3, p. 032505, 2015.
C. Li, X. Zhang, Y. Wang, and H. Chen, “Numerically calculated Stark structures of cesium Rydberg atom and experimental observation in an ultracold gas,” J. Phys. Soc. Jpn., vol. 81, no. 4, p. 044302, 2012.
A. Giatzoglou, M. Papadopoulos, E. Karydas, and S. Economou, “A facility for production and laser cooling of cesium isotopes and isomers,” Nucl. Instrum. Methods Phys. Res. Sect. A, vol. 908, pp. 367–375, 2018.
J. Dobrzyniecki and M. Tomza, “Quantum simulation of the central spin model with a Rydberg atom and polar molecules in optical tweezers,” Phys. Rev. A, vol. 108, no. 5, Art. no. 052618, pp. 1–23, 2023.
A. Laskowski and N. P. Mehta, “Homonuclear ultracold elastic s-wave collisions of alkali-metal atoms via multichannel quantum defect theory,” Phys. Rev. A, vol. 108, no. 4, p. 043306, 2023.
H. Suno, T. Yamamoto, M. Kobayashi, and Y. Nakamura, “Quantum chemical calculation studies toward microscopic understanding of retention mechanism of Cs radioisotopes and other alkali metals in lichens,” Sci. Rep., vol. 11, no. 1, p. 8228, 2021.
A. Sab, U. Vogl, and M. Weitz, “Laser cooling of a potassium–argon gas mixture using collisional redistribution of radiation,” Appl. Phys. B, vol. 102, no. 3, pp. 503–507, 2011.
M. Safronova, U. I. Safronova, and C. W. Clark, “Laser cooling and trapping of potassium at magic wavelengths,” arXiv preprint arXiv: 1301.3181, 2013.
C. Cherfan, L. Dupont, A. Martin, and P. Lefevre, “Multi-frequency telecom fibered laser system for potassium laser cooling,” Appl. Phys. Lett., vol. 119, no. 20, p. 204001, 2021.
T.L. Chen, Y. H. Li, W. Zhang, and H. Xu, “Inverted-ladder-type optical excitation of potassium Rydberg states with hot and cold ensembles,” Phys. Rev. A, vol. 101, no. 5, p. 052507, 2020.
R. Cardman and G. Raithel, “Driving alkali Rydberg transitions with a phase-modulated optical lattice,” Phys. Rev. Lett., vol. 131, no. 2, p 023201, 2023.
A. Bouillon, E. M. Bujedo, and M. Génévriez, “Direct laser cooling of Rydberg atoms with an isolated-core transition,” Phys. Rev. Lett., vol. 132, no. 19, p. 193402, 2024.
E. Mimoun, C. Dubois, and F. Lambert, “Solid-state laser system for laser cooling of sodium,” Appl. Phys. B, vol. 99, no. 1, pp. 31–40, 2010.
Y. Mei, L. Chen, X. Zhang, and R. Wang, “Trapped alkali-metal Rydberg qubit,” Phys. Rev. Lett., vol. 128, no. 12, p. 123601, 2022.
T.L. Nguyen, A. Dupont, and S. Martin, “Towards quantum simulation with circular Rydberg atoms,” Phys. Rev. X, vol. 8, no. 1, p. 011032, 2018.
W. Yan-Bang, L. Ming, and Z. Qiang, “Observation of Rydberg series in sodium vapour by two-photon resonant nondegenerate four-wave mixing,” Chin. Phys. Lett., vol. 18, no. 9, pp. 1202–1204, 2001.
D. B. Branden, E. R. Smith, and T. J. Wilson, “Radiative lifetime measurements of rubidium Rydberg states,” J. Phys. B: At. Mol. Opt. Phys., vol. 43, no. 1, p. 015002, 2009.
A. Dalal and B. C. Sanders, “Two-qubit gate in neutral atoms using transitionless quantum driving,” Phys. Rev. A, vol. 107, no. 1, p. 012605, 2023.
R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun., vol. 5, no. 1, p. 5713, 2014.
K. Nechay, A. Ivanov, L. Schmidt, and M. Becker, “Multiwavelength narrow linewidth laser system for Ba⁺ quantum computing applications,” in Quantum Computing, Communication, and Simulation IV, vol. 12911, SPIE, pp. 337–342, 2024.
S. Omanakuttan, R. Verma, L. Zhao, and M. Krüger, “Coherence preserving leakage detection and cooling in alkaline earth atoms,” arXiv preprint arXiv: 2410.23430, 2024.
Y. Nakamura, H. Saito, K. Tanaka, and M. Kobayashi, “Hybrid atom tweezer array of nuclear spin and optical clock qubits,” Phys. Rev. X, vol. 14, no. 4, p. 041062, 2024.
S. G. Menon, L. Chen, A. Martinez, and H. Tanaka, “Nanophotonic quantum network node with neutral atoms and an integrated telecom interface,” New J. Phys., vol. 22, no. 7, p. 073033, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 The Nucleus

This work is licensed under a Creative Commons Attribution 4.0 International License.
For all articles published in The Nucleus, copyright is retained by the authors. Articles are licensed under an open access licence [CC Attribution 4.0] meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited properly.

