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This paper presents the significance of solar flare according to their duration. The characterization in the variability of 
flares has been developed using modeling techniques. It is desirable to develop such models which predict at least a 
day or so ahead, when solar flare influence on terrestrial system may be expected. For that purpose, future aspects of 
these flares are investigated by stochastic analysis. After doing residual analysis a proper ARIMA model is developed 
to forecast the Solar Flare Duration (SFD). These investigations are the part of work connecting solar flare activity with 
ozone layer depletion which is one of the solar-terrestrial relationships. 
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1. Introduction 
The monthly average solar flare duration was 

obtained from SUPARCO, HQ Karachi. These are 
the interceptions in the ionosphereic layer recorded 
by Digisonde at the time of solar flare. The 
analyses are computed for the period from March 
1979 to March 2006. 

Solar flares occur when strong magnetic fields 
extending high into the sun’s atmosphere above 
sunspots or other portions of the photosphere, 
suddenly collapse and then recombine. In such 
case the oppositely directed magnetic field lines 
come together and partially annihilate each other. A 
largest solar flare has total energy emissions equal 
that released by two and a half thousand million 
hydrogen bombs [1, 7]. 

The field of solar physics is important because 
of its complexities and effects on terrestrial 
environment. The effects of high-energy particles 
emitted during the flare normally last for hours to 
days after the augmentation in radiative flux. These 
particles are lethal for astronauts in space [2]. 

Other effects include partial or total blackout of 
radio waves communication, ozone layer depletion, 
polar cap absorption, magnetic storms, inter-

ruptions in electronic system of satellite and its 
orbital drag. Navigation systems are adversely 
affected and the accuracy and reliability of Global 
Positioning System (GPS) decreases [4, 6, 8]. 

Impulsive flares are of short duration and at 
most they are not associated with coronal mass 
ejection (CME) and solar proton events (SPE), 
whereas gradual flares are of long duration and 
mostly associated with these events.  Sometimes 
CMEs can originate also in quiet parts of the sun 
[5]. 

Solar Flares which have marked effects on near 
earth are also interrelated with sunspots at the time 
especially while they are decaying [3]. These 
evidences signify the need of a proper model that 
can be used to forecast the behavior of solar flares. 
It has been known that a model is the prediction of 
the variation of basic parameters. These we 
obtained by stochastic or time series analysis in 
which the arrangement of the data is in accordance 
with the time of occurrence [15]. 

2. Examine Stationarity 
As the autocorrelation of the original series 

does not drop to or near zero quickly, instead it 
decays exponentially and upto lag 15 it remain 
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positive indicates non-stationarity. On the other 
hand the partial autocorrelation indicates 
stationarity because it drops near to zero quickly 
after the first value [11]. 

It, therefore, concludes that the data have 
partially non-stationary behavior. 
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Figure 1. Autocorrelation for SFD exhibit non-stationary 
behavior. 
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Figure 2. Partial Autocorrelation for SFD exhibit stationary 
behavior. 

Another test of stationarity can be obtained by 
observing spectral density of the series. To be a 
series to stationary the spectral density cannot 
change with time [10]. 
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Figure 3. Spectral analyses for the first half data series of SFD. 
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Figure 4. Spectral analyses for the second half data series of 
SFD. 

For the case of SFD the first half of a time 
series had component oscillations of peak 
frequency, f = 0.0123 and for the second half this 
frequency found to be uniform. This indicates 
stationary series. 

Although the mean of SFD seems to be uniform 
but the variance is far from constant and indicates 
partially non-stationary behavior [9] . 
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Figure 5. Average monthly observed SFD. 
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3. Examine Seasonality 
A seasonal component in a series if it exists, 

can also be identified with the help of correlogram. 
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Figure 6. Autocorrelation Function for SFD . 

The above figure depicts lack of seasonal 
component in the data set because peaks exist at 
lags 1, 33, 91, 149 etc. There was no apparent 
periodicity. 

4. Model Estimation 
The first thing to note is that most of time series 

are non-stationary, and the Autoregressive (AR) 
and Moving Average (MA) aspects of an ARIMA 
model refers only to a stationary time series. A time 
series is said to be stationary if there is no 
systematic change in mean (no trend) which is 
according to our data. However, some evidences 
indicate non-stationarity. For that purpose, we 
developed ARIMA models, some with differencing 
and other without differencing. After doing residual 
analysis we validated the model by comparing the 
predicted values with real observations of the last 
year. The models specified, are ARMA (2, 1) 
ARIMA (2, 1, 1), ARIMA (3, 1, 0), ARIMA (2, 1, 0) 
and AR (3). 

An autoregressive process will only be stable if 
the parameters are within a certain range: for 
example, if there is only one autoregressive 
parameter then it must fall within the interval of 
−1 <  < 1 [9]. tx

5. Residual Analysis 

i. For a good model residuals are expected to be 
random and close to zero. For AR (3) only lag 
14 existing outside the confidence band. 
Hence AR (3) may be an appropriate model. 
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Figure 7. Autocorrelation of AR (3) shows serial dependence 
except at lag 14. 

ii. One of the statistics which is used for testing 
residual is the Durbin-Watson statistic i.e.  

( )1d 2 1 r≅ − .  For a true model to be fitted, 

01 ≅r  and 2≅d  [12]. 

iii. The test suggested by Box and Pierce (1970) 
for the independence of the residuals is given 
by the expression: 2k

j 1 jR n r== ∑  where R is 

distributed as 2
k p q− −χ  where k is usually at least 

20. The ’s are calculated on the residual 

series. If the residual series has N 
observations and the original series was fit by 
an ARIMA (p, d, q) model, then n = N – d. A 
significant chi-square indicates model 
inadequacy [13].  
AR (1) model; R=33.70; = 30.14.  
AR (2) model; R=30.45; = 28.87.  
AR (3) model; R=24.86; = 27.59 at 5 % 
level of significance. 

jr

2
19χ
2
18χ

2
17χ

Hence AR (3) is an adequate model. 

iv. The conditional or static aspect of the ARMA 
(n, m) model is exactly a linear regression 
model; therefore F-test can be used to check 
the adequacy of the model as follows.  

1 o oA A A
F

s N
−

= ÷
r−

; where oA  is the (smaller) 

sum of squares of the unrestricted model  
is the (larger) sum of squares of the restricted 
model with s and N  degree of freedom 
[10]. 

1A

r−
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This test can be utilized here to find the 
appropriateness of AR (3) or ARIMA (3, 1, 0) 
against ARMA (2, 1). As the F- computed value 
3.10 is slightly greater than the value 3.00 obtained 
from the F-distribution table. It may conclude that 
the ARMA (2, 1) model is also adequate at 5 % 
level of significance. 

The coefficient of determination  can be 
obtained by the relationship as,  

2(R )

2 E

Y

SS
R 1

SS
= −  [14]  

= Residual sum of squares  
= Total sum of squares 

ESS

YSS

Table 2.1.    Summary. 

 DWS R2 BPQS 

AR(3) 2.046 0.614 24.86 

ARIMA (2,0,1) 2.032 0.622 17.77 

ARIMA (2,1,1) 2.018 0.637 28.87 

ARIMA (2,1,0) 2.030 0.615 27.72 

ARIMA (3,1,0) 2.018 0.619 22.00 

Table 2.2.     Forecast from AR (3). 

Lower Upper 
Period Forecast 

95.0 % 95.0  % 
Std. Error 

326 46.0 6.6 85.4 23.8 

327 41.9 -8.1 91.9 30.3 

328 41.1 -15.5 97.8 34.3 

329 39.9 -22.8 102.8 38.0 

330 38.5 -29.6 106.6 41.3 

Table 2.3.   Forecast from ARMA (2. 1). 

Lower Upper 
Period Forecast 

95.0  % 95.0  % 
Std. Error 

326 44.0 -8.1 83.0 23.6 

327 41.0 -2.4 90.2 29.8 

328  39.0 -15.8 93.9 33.2 

329 37.7 - 21.1 96.5 35.6 

330 36.7 -25.0 98.5 37.4 

Table 2.4.    Parameter estimation. 

           Model 
Order     

p (1) p (2) p (3) q (1) MS 

AR(3) 0.78 0.06 0.11 ----- 570 

ARMA(2, 1) 1.58 - 0.5 ----- 0.82 559 

ARIMA(2,1,1) 0.73 0.09 ----- 0.99 538 

ARIMA(2,1,0) - 0.2 - 0.1 ----- ----- 569 

ARIMA(3,1,0) - 0.2 - 0.1 - 0.1 ----- 564 

6. Conclusion 
i. A proper ARIMA model has been selected to 

forecast the SFD of solar flares. After doing 
residual analysis AR (3) is recommended. 
ARMA (2, 1) is also appropriate but since one 
of its parameters is greater than one, it 
consider unstable. 

ii. The time series of SFD have partially non-
stationary behavior but not much enough 
required for differencing. 
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