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The order/disorder phenomenon is important in many branches of science especially metallurgy and solid state physics 
because the transformation is accompanied by changes in many physical properties. In the last several decades many 
mathematical models of Order-Parameters have been proposed by the scientific community that could better describe 
the phenomenon. However, due to the subtle but important differences in the definition of an ‘Order Parameter’, as 
adopted by physicists, metallurgists, chemists, thermo-dynamists, and computer scientists an odd-complexity and 
abstraction has unintentionally crept in. A brief review is hereby presented of the several prevailing definitions of ‘Order 
Parameters’ to highlight the use of this term as it is used in materials modeling. The work of the authors is presented 
that is related with predicting the pair correlations for qausi-chemical treatment of binary alloy systems. The 
mathematical models chosen cover the range from random to ordered solid solution. 
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1. Introduction 
Since long, the word ‘order’ has been 

extensively used by the scientific community with 
its antonym ‘disorder’ equally frequently as its 
conjugate. With the advent of systematic studies in 
science, and since then, this technical phrase has 
gone through several metamorphoses, in its literal 
meaning and rigorous mathematical treatment. 
Because of the simplicity of the word and its 
frequent day-to-day usage by people of different 
scientific background a weird-complexity and 
abstraction has inadvertently been introduced. 
There are, in fact, subtle but important differences 
in its definition, as adopted by physicists, 
metallurgists, chemists, thermo-dynamists, and 
computer scientists [1-22].  

The modern day user of the terminology, order 
parameter, especially a graduate or a postgraduate 
student of materials science, finds many definitions 
of this term confusing and perplexing. It is 
important that the perspective be known of the 
people belonging to various schools of science who 
use this term in as diverse meaning as a simple 
adjective-word or as a complex mathematical 
terminology. This paper is, therefore, written in two 
sections. In the first section the physical and 

mathematical meaning of order parameter are 
presented. This treatment is non rigorous but 
effectively brings out the diversity of the usage-
based definitions with particular reference to its use 
in materials modeling problems. The second 
section focuses on one particular aspect of the 
order parameter that is the determination of the 
number of like and unlike pairs in a binary solid 
solution which is an important area for qausi-
chemical treatment of binary alloy systems. This 
section contains the work and results of the 
authors.  

1.1. The Scope of the Terminology Order 
Parameter in Materials Modeling Based on 
Usage 

The following is a non-exhaustive list of areas 
covering the scope and importance of this 
terminology based on its usage. The detail can be 
seen in the references cited. 

i. as a means to differentiate between different 
states of matter [1]. 

ii. for their importance in determining physical 
properties [2]. 

• thermodynamic properties like configurat-
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ional entropy and specific heat [3]. 

• for predicting most of the mechanical 
properties [4]. 

• Optical and magnetic properties [1]. 

iii. in crystallography [5]. 
a) for the determination of x-ray and 

electron diffraction intensities [5]. 
b) for determination of crystalline phases 

having Long Range Order (LRO) [6]. 
c) to determine order/disorder transfor-

mations [7] 
iv. for calculating the binary and higher order 

phase diagrams [8] 
a) in determination of pair correlations [9]  
b) for the location of phase boundaries 

[10] 
v. In materials modeling [9] 

a) CALPHAD [8] 
b) Molecular dynamics  [8] 
c) Cluster variation model (cvm) [9] 

vi. In computational-algorithm-development [11] 
vii. In statistical thermodynamics [12] 

1.2. The Ordering Transformation in Solid 
Solutions 

The ordering transformation in solid solutions is 
of practical importance. If the atoms in a 
substitutional solid solution are completely 
randomly arranged then each lattice position is 
available for occupation by all the constituent 
atoms. On the other hand, the solid solution would 
be called an ordered solid solution if A atoms 
prefer specific lattice sites (called A–sites) and B 
atoms prefer different but specific lattice sites 
(called B-sites). The three most commonly 
encountered ordered lattices, also referred to as 
super lattices are provided in Figure 1. These 
include BCC(L20), FCC(L12), DO3, for the sake of 
clarity the corresponding disordered lattices are 
also provided [7].  

It is obvious that in binary alloys the number of 
AA, BB and AB bonds would be different in 
completely ordered and in completely random solid 
solutions. The number of AB bonds would be 
maximum in the completely ordered state and 
progressively decrease as the degree of ordering 
would diminish. The internal energy will depend 

upon the number of bonds of each type that would 
vary in an ordering transformation. Many of the 
thermodynamic, physical, chemical and 
mechanical properties would change with this 
transformation. 

 
Figure 1. The BCC(L20), FCC(L12) and DO3 ordered super lattices and 

corresponding disordered lattices. 

2. Typical Mathematical Forms of the Order 
Parameters 

The mathematical models of ordering were 
proposed soon after the discovery of x-rays. 
People have put forward numerous models both for 
SRO and for LRO 

2.1. The SRO Parameters 
Few well known equations of SRO parameters 

are given below 
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P - P
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P - P
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The Eq.1 is based upon the total number of 
bonds in a binary system of fixed size. For any 
superlattice, all values of s > 0 indicate different 
level of ordering and for fully random alloys s =0, 
[13]. 

The definition of SRO by Equation 2 
characterizes the radial atomic distribution i.e. 
fluctuations of atomic concentrations in various 
coordination spheres i, j and k around an arbitrary 
atom that is chosen as the centre. It is implicit in 
this definition that there may be different values of 
the SRO parameter for different values of i, being 
the ith sphere. For short range order αi < 0. This 
definition takes into account chemical as well as 
orientational order, however an-atom-by-atom 
positional order is not taken into account [3]. 

The SRO provided by Equation 3 involves the 
correlation parameters for different coordination 
spheres about an atom. It defines the correlation 
parameter in terms of the probability that sites of a 
kind occupied by A atoms are surrounded by B 
atoms on the other kind of sites [14]. 

Yet another definition of SRO is provided by 
Equation 4. Short-range order means that the 
atoms with given site fractions do not arrange 
themselves at random within each sublattice [15]. 

2.2. The LRO Parameters 
The most well-known forms of the LRO are 

provided below  

A

A

r -X
L =

1-X
α        where XA ≤ rα ≤ 1   [13]    (5a) 

β B

B

r -X
L =

1-X
        where XB ≤ rβ ≤ 1   [13]   (5b) 
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The Eqs. 5a and 5b describe the most widely 
used definition of long range order. For complete 
order L = 1, corresponding to rα = rβ =1, and for 
complete randomness L = 0 that would result when 
rα = XA and rβ = XB. It is obvious from this definition 
that LRO-parameter can only vary in the range 0 ≤ 
L ≤ 1 [13]. 

The LRO provided by Eqs. 6a and 6b are for AB 
and A3B type lattices. In the case of an AB alloy of 
the body centered cubic CuZn type, the lattice can 
be considered as made up of two interpenetrating 
simple cubic lattices designated α and β. Then the 
α sites are arbitrarily chosen as the ‘right’ sites for 
A atoms, so that for perfect order all A atoms are 
on α site and all B atoms are on β sites. In the case 
of alloys of near A3B compositions the ordered 
lattice is composed of three simple cubic 
sublattices of α sites and one simple cubic 
sublattice of β site [5].  

 3. Present Work 
Swalin [13], has provided rigorous mathematical 

treatment to calculate binary pairs for the simple 
bcc superlattice having L20 structure and a 
50A:50B composition. In this work the same 
mathematical approach has been used and 
extended to BCC (L20), DO3 and FCC(L12) 
structures. The authors have worked out the 
relationships between the order parameters that 
are defined by Equations 1, 2 and 5 to calculate the 
number of AA, BB and AB pairs under identical 
conditions. It must also be stated that Equations 
1,2 and 5 are all based on unlike pairs, similar 
equations can easily be postulated for like pairs. 
The present work has demonstrated that each 
unique value of LRO-parameter L yields a new but 
fixed number of PAB, PAA and PBB pairs. Exactly the 
same number of pairs has been obtained from a 
different but unique value of SRO based on S or α.  

The assumptions made for this work include: 
firstly that the binary alloy contains a total of No 
atoms with no vacancies; secondly there is no 
composition fluctuation in the alloy and the alloy is 
in thermodynamic equilibrium having a minimum 
value of Gibbs Free Energy (G); thirdly the mole 
fraction of A is XA, hence number of A atoms is 
XANo and lastly that the coordination number of 
each type of atoms is Z.  

The following algorithm is used to derive the 
equations as shown by Swalin [13]. 
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Step 1:  The general formulae for the calculation of 
PAA, PBB and PAB were derived using the definition 
of all three order parameters, L, S and α. 

Step 2: The physically possible, precise ranges, of 
the three order parameters were calculated for the 
maximum, minimum and random number of pairs 
for an alloy of known composition using statistical 
thermodynamics.   

Step 3: Starting with the definition of any of the 
order parameter (say L) and for its entire range, the 
numbers of binary pairs were calculated. 
Consequently discrete values of PAA, PBB and PAB 
for different degrees of clustering and ordering 
were generated   

Step 4: For each discrete value of the binary pair 
(say PAB) that was calculated in step 3, the values 
of the two corresponding order parameters (say 
SAB and αAB) were calculated that would yield the 
same number of PAB

Step 5: Finally the relationship between the order 
parameters were determined 

4. Results 
4.1 BCC (L2O) Structure 

The stoichiometric ratio for L2O ordered lattice is 
AB. The examples of L2O include CuZn, FeCo, 
NiAl, FeAl, AgMg etc [22] The coordination number 
Z for BCC (L2O) is equal to 8.  

Figure 2(a-c) shows the relationship between 
different order parameters and predicts the number 
of pairs for L2O lattice during the ordering 
transformations of the alloy resulting in the 
formation of superlattice. The following equations 
provide the relationship between ordering 
parameters for the range of LRO, 0 ≤ L ≤ 1.  

SAB  = -αAB = L2     (7) 

SAA  = -αAA = -L2     (8) 

SBB = -αBB = -L2     (9) 

4.2 FCC (L12) Structures 
The stoichiometric ratio for both L12 ordered 

lattices is AB3 (or A3B). The examples of L12 are 
AuCu3, CuAu3, Ni3Mn, Ni3Fe, Ni3Al, Pt3Fe, etc [22] 
For generalization we have taken XA = 0.75, XB = 
0.25 with Z being the coordination number equal to 
12 for L12.  

 
Figure 2. The relationship between different order parameters 

in predicting the number of pairs in BCC (L20) lattice 
having AB composition. The figures (a-c) further 
predict the variation of number of PAA, PBB and PAB 
from random to ordering. 
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Figure 3 (a-c) shows the relationship between 
different order parameters  in  L12 superlattice. The 

 
Figure 3. Order parameter relationship for FCC (L12) lattice. 

The typical trend of the curves in (a), (b) and (c) are 
due to the atomic ratio 3:1 for A and B atoms in the 
A3B structure. 

mathematical relationship between ordering 
parameters for the range of LRO, 0 ≤ L ≤ 1 are 
given below.  

SAB  = -3αAB = L2   (10) 

SAA  = -3αAA = -0.333L2   (11) 

SBB = -0.333 αBB = -0.333L2   (12) 

4.3 The BCC (DO3) Structures 
The stoichiometric ratio for BCC DO3 ordered 

lattices is AB3 (or A3B). The examples of DO3 
include Fe3Al, Fe3Si, Fe3Be, Cu3Al, BiF3 etc. [22]. 
For generalization we have taken XA = 0.75, XB = 
0.25 with Z being the coordination number equal to 
8 for DO3.    

Figure 4(a-c) shows the results for the DO3 
lattice graphically while the mathematical 
relationship is provided in the following equations 
for the range of LRO, 0 ≤ L ≤ 1.  

SAB  = -3αAB = L2   (13) 

SAA  = -3αAA = -0.333L2   (14) 

SBB = -0.333 αBB = -0.333L2   (15) 

5. Discussion 
It was noticed that any definition of an order 

parameter, be it of SRO or of LRO, can each be 
used for the determination of the number of AA, AB 
and BB pairs. This inference led to the thought that 
a relationship has to exist between these order 
parameters for the system that has a fixed number 
of atoms. Present work proved that this indeed was 
the case. The graphical representations of the 
derived equations are provided in Figures 2-4. It is 
obvious from any of these figures that a fixed 
number of AA, BB and AB bonds (which is a 
unique physical situation) fixes the value of the 
ordering parameter, whether it is an LRO or an 
SRO. Hence this work is kind of a normalization 
between different ordering parameters. The type of 
this work is exactly like determining the relationship 
between different temperature scales, a knowledge 
of which would help us to represent the melting 
point of ice in °C, °F, K or R without any ambiguity. 
It is a common practice in many problems of 
science and engineering to report the value of SRO 
or LRO for a binary system, this work is useful in 
predicting the number of pairs from this 
information, which in turn is extremely useful in 
determining many material properties. 
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Figure 4. Like Fig. 3 but for DO3 lattice having XA = 0.75 & XB 

= 0.25; Although the ranges of order parameters are 
exactly the same as in FCC L12 structure but the 
range of each PAA, PBB and PAB are quite difficult. 

All the assumptions made for this work are quite 
justifiable. Since the total number of pairs in No 
atoms would remain constant whether the solid 
solution is random or ordered. The number of 
binary pairs would be half the number of total 
bonds, i.e., for a system of NO atoms with z 
coordination number there would be NOZ bonds but 
(NOZ)/2 pairs. The number of total pairs would be 
equal to sum of PAA+PBB+PAB. Where PAB is the 
number of AB+BA pairs in the system since both 
represent the same bond. The physical-
mathematical-equation PAA+PBB+PAB = Constant, is 
quite unlike the purely-mathematical-equation 
X+Y+Z = Constant. In purely mathematical 
equation it is not necessary that each of X, Y and Z 
should have a functional relationship with each 
other. Each of X, Y or Z could have a positive or a 
negative value, not necessarily integers, and any 
two can be independently defined to fix the third. 
Even if we confine to positive integer values of X, Y 
and Z, still, two could be varied without considering 
the physical bearing on third as long as its value is 
a positive integer while yielding the same constant 
upon summation. This is not the case for 
PAA+PBB+PAB = Constant, where functional 
relationships of the type PAB = f1(PAA), PAB = f2(PBB) 
and PAA = f3(PBB) do exist. Hence fixing any 
number of either of PAA, PBB, PAB would fix the 
number of the other two types of pairs. This 
physical fact implies that there exists a relationship 
between order parameters as long as they are 
consistently defined. It is worth mentioning that the 
condition that there are no vacancies is also of 
important physical significance. In the case of 
vacancies there would be vacancy plus atom pairs 
that would add to the complexity of the problem.  

It is concluded that the three most popular 
definitions of LRO and SRO can each be used to 
calculate the number of pairs, PAA, PBB and PAB for 
binary alloy solid solutions that show the 
phenomena of randomness or ordering under 
different thermodynamic conditions. This result can 
be generalized for all order parameters. It is also 
found that the relationship among order 
parameters between L12 and DO3 structures is the 
same but the number of pairs for both of these 
superlattices is quite different because of their 
different coordination number. 
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Symbols

S   SRO parameter notation based upon 
unlike AB bonds used by [21] 

PAB  The actual number of AB bonds 

PAB(max) Maximum possible number of AB bonds 

PAB(random) The number of AB bonds in a random 
solution 

SAB SRO parameter notation used by the 
present authors, based upon AB bonds 

SAA SRO parameter notation used by the 
present authors, based upon AA bonds 

SBB SRO parameter notation used by the 
present authors, based upon BB bonds 

αi   SRO notation based upon unlike AB 
bonds in the ith coordination sphere [3] 

Pi  The point probability of finding B atom 
at position i 

XA  Mole fraction of A 

XB  Mole fraction of B 

αAB SRO parameter notation used by the 
present authors, based upon unlike AB 
bonds 

αAA SRO parameter notation used by the 
present authors, based upon unlike AA 
bonds 

αBB SRO parameter notation used by the 
present authors, based upon unlike BB 
bonds 

α(1) SRO parameter used by [19] 

PAB(Pi) Probability of finding AB pair under prior 
defined ‘Pi’ constraint 

CA  Concentration of atom A 

CB  Concentration of atom B 

εAB(pi) Correlation parameter for AB pair 
under prior defined ‘Pi’ constraint 

L  LRO parameter notation based upon 
unlike AB bonds used by [21] 

rα  Fraction of α sites occupied by the right 
atoms (A-atoms) 

rβ  Fraction of β sites occupied by the right 
atoms (B-atoms) 
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