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Let denote the Cartesian product of the graphs  and and let denote the domination number of the G H G H (G H)γ
Cartesian product of the two simple graphs G  and . In this note, the domination number of the Cartesian product 

,  and  is determined; that is
H

3 nC P 4 nC P 5 nC P 3 n(C P ) nγ = , 4 n(C P ) nγ =  where  and n 1≥

5 n
5n 1(C P )

3
−⎢ ⎥γ = ⎢ ⎥⎣ ⎦

  where n 4 . ≥
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1. Introduction 
Motivation to study graph theory is its ability to 

represent many situations in life as graph-theoretic 
models; whether they are natural structure or man-
made, like biology, computer science, economics, 
engineering informatics, linguistics, mathematics, 
medicine, social science etc. Inspiration to study 
the domination number of a graph is to make 
important strategic decisions like placing some 
service stations in a large network. 

A graph G  is a triple consisting of a vertex set 
 that is , an edge set E  that is E  and a 

relation that associates with each edge two vertices 
called endpoint. A graph is simple if it has no loops 
and no multiple edges. A set of vertices D  of a 
simple graph  is called dominating set if every 
vertex  is adjacent to some vertex 

. The domination number of a graph , 
denoted by , is the cardinality of a smallest 
dominating set of a graph G. A dominating set D  
with  is called the minimum dominating 
set [1]. The Cartesian product  of graphs G 
and H is the graph with vertex set  and 

 whenever  and 
 or  and . For , 

set and for a , set , 

the sets  and  are called layers of  or H  
respectively [2]. 
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On domination theory of Cartesian product of 
graphs; there are two fundamental problems, one 
is the conjecture of Vizing, which is still open, 
stated in [2,3] such as (G H) (G) (H)γ ≥ γ γ  that is 
the domination number of the Cartesian product of 
the two graphs is at least the product of their 
domination numbers and for many partial results 
see [4, 5]. The other problem is to determine the 
domination number of certain Cartesian products of 
graphs [4, 7, 8]. Also this problem seems to be a 
difficult one and even for a subgraph of 
D {0 J} {2 L}= × ∪ ×  is NP-complete and the 
problem itself is also open. 

2. Main Results 

Lemma 1 : let  be an integer with , for 
, the domination set ; 

where

n n 1≥

3 nC P D {0 J} {2
J {j | j 0(mod 2); j 0}= ≡ ≥  and 

L {l | l 1(mod 2);l 0}= ≡ ≥  with  and 0 j n≤ ≤
0 l n 1≤ ≤ − . 

= × ∪

Proof : Let (  and  be the coordinate pairs 
of the domination set points Cartesian product of 

 and , where . It is shown here that 

0, j) (2,l)

3C nP n 1≥
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D {0 J} {2 L}= × ∪ × , where D  is the domination 
set. Let  be a layer of the Cartesian product of 

 and  where  and also let  be a layer 

of the Cartesian product of  and , where 
. Domination set points in layer  will take 

the form of J  and 
. The domination set D  is 

now union of the Cartesian product of the sets  
and , that is ;  and { , that is 

xG

3C nP x H∈ yH

3C nP
y G∈ xG

{j | j 0(mod 2); j 0}= ≡ ≥
L {l | l 1(mod 2);l 0}= ≡ ≥

{0}
{J} {0 J}× {2} L} {2 L}× ; 

. Obvious restriction are 
imposed on ordinate indices is  and
D {0 J} {2 L}= × ∪ ×

j n< l n< , 
which leads to the intervals on indices as 0 j n≤ ≤  
and 0 . l n 1≤ ≤ −

Lemma 2: [7, 9]: n
n(P )
3
⎡ ⎤γ = ⎢ ⎥⎢ ⎥

 

Theorem 3 : For any integer n ,0> 3 n(C P ) nγ =  

Proof: Let  be the dominating set containing the 
vertices of the form (  and ( , where 

 and  with 0

D
0, j) 2,l)

j 0(mod 2)≡ l 1 (mod 2)≡ j≤  
and l n . From the lemma 1 above the 
domination set D  is an immediate consequence of 
the construction by Cartesian product of the sets  
with and 2 with l respectively and easy to check 
that | .  

1≤ −

0
j
D | n=

Now, in continuation with this, it is proved here 
that the Cartesian product of  and , such that 3C nP

3 n(C P ) nγ ≥ , whenever n . Let , the 
set  is a layer of G i.e., G− layer. In 
Cartesian product of  every single G−layer 
of the product is and by lemma 2 above 

1≥ x V(H)∈

xG G {x= }

3 nC P

3C

n
n(P )
3
⎡ ⎤γ = ⎢ ⎥⎢ ⎥

 and for each G−layer the domination 

set consists of a single vertex, that is, . 
Hence each G−layer of the product contains only 
one vertex from the domination set D; 
consequently n of the G−layers contains 

3(P ) 1γ =

 vertices 
from the domination set and| , which proves 
that for any integer n , . 

D | n=
0≥ 3 n(C P ) nγ =

Lemma 4 : Let n be an integer with , for 
 the domination set D ; 

where 

n 2≥
4 nC P {0 J} {2 L}= × ∪ ×

J { j | j 0(mod 2); j 0}= ≡ ≥ , and  
L {l | l 1(mod 2); l 0}= ≡ ≥  with .  0 j, l n≤ ≤

Proof : Let (0, j) and (2, l) be the coordinate pairs of 
the domination set of Cartesian product of the cycle 

 and a path , where  . It is shown here 
that the domination setD . Let 
be a layer of the Cartesian product of cycle  and 
path , where 

4C nP n 2≥
{0 J} {2 L}= × ∪ × xG  

4C

nP x H∈  and let  be also a layer of 

the Cartesian product of cycle  and path 
where

yH

4C nP  
y G∈ . Domination set points in the layer  

will take the form of , that is, we say 
that

yH

j 0(mod 2)≡
J {j | j 0(mod 2); j 0}= ≡ ≥ , and  

that is, we say that L
l 1(mod 2)≡

{l | l 1(mod 2); l 0}= ≡ ≥  . The 
domination set D is now union of the Cartesian 
product of the sets 0 and J that is  and 2 and 
L that is

{0 J}×
{2 L}× ; that is D . Obvious 

restrictions are imposed on ordinate indices j and l, 
which leads to the intervals on indices as 

{0 J} {2 L}= × ∪ ×

0 j, l n≤ ≤ .  

Theorem 5 : For any integers n 2 , . ≥ 4 n(C P ) nγ =

Proof : Same line of argument is to be taken as in 
proving theorem 3. Let D be the dominating set 
containing the vertices of the form (0, j) and (2, l) 
where , and l  with j 0(mod 2)≡ 1(mod 2)≡
0 j,l n≤ ≤ . The set D is an immediate consequence 
of the construction by Cartesian product of the sets 
0 with J and 2 with L respectively and easy to 
check that | D | n=  again. 

Now, in continuation with this, it is proved here 
that the Cartesian product of and , such that 4C nP

4 n(C P ) nγ ≥  , whenever n . Let , the 
set  is a layer of G i.e., G− layer. In 
Cartesian product of C  every single G−layer 
of the product is  and by lemma 2 above 

2≥ x V(H)∈
Gx G {x}=

4 nP

4C

n
n(P )
3
⎡ ⎤γ = ⎢ ⎥⎢ ⎥

 and for each G−layer the domination 

set consists of a single vertex, that is, 4(P ) 2γ = . 
Hence each G−layer of the product contains only 
one vertex from the domination set D; 
consequently n of the G−layers contains n vertices 
from the domination set and D n=  , which proves 
that for any integers n 2 , . ≥ 4 n(C P ) nγ =
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Lemma 6 : let n be a positive integer with  for 
, the domination set  

; where  
, 

, and  
.  

n 4≥
5 nC P

D {0 J} {2 L} {4 Q}= × ∪ × ∪ ×
J {j | j 0(mod 2); j 0}= ≡ ≥
L {l | l 1(mod 2);l 0}= ≡ ≥
Q {q | q 0(mod 2); q 0}= ≡ ≥

(C

Proof : Let ,  and (  be the coordinate 
pairs of the domination set points Cartesian 
product of and  where  . It is shown 
here that D , where D is 
the domination set. Let be a layer of the 
Cartesian product of cycle and path  where 

 and let be also a layer of the Cartesian 

product of and  where . Domination set 
points in the layer  will take the form of 

, that is 

(0, j) (2,l) 4,q)

5C nP n 2≥
{0 J} {2 L} {4 Q}= × ∪ × ∪ ×

xG

5C nP
x H∈ yH

5C nP y G∈

yH

j 0(mod 2)≡ J {j | j 0(mod 2); j 0}= ≡ ≥ , 
and l , that is 1(mod 2)≡ L {l | l 1(mod 2);l 0}= ≡ ≥ , 
and similarly , that is 

. The domination set D 
is now union of the Cartesian product of the sets 0 
and J, ; 2 and L, 

q 0(mod 2)≡
Q {q | q 1(mod 2); q 0}= ≡ ≥

{0 J}× {2 L}× ; 4 and Q, ; 
that is . Obvious 
restrictions are imposed on ordinate indices are 

,  and q  which leads to the intervals 
on indices as , 0  and also

{4 Q}×
D {0 J} {2 L} {4 Q}= × ∪ × ∪ ×

j n< l n< n<
0 j n≤ ≤ l n≤ ≤ 0 q n≤ ≤ .  

Theorem 7 :    For   any   integers n 4 ,  ≥

5 n
5n 1(C P )

3
−⎢ ⎥γ = ⎢ ⎥⎣ ⎦

  

Proof : Let D be the domination set containing the 
vertices of the form ,  and ( , 
where , l  and q . 
By lemma 6 above, D is a construction of the 
Cartesian product of the sets 0 with J and 2 with L 
and 4 with Q respectively. 

(0, j) (2, l) 4,q)
j 0(mod 2)≡ 1 (mod 2)≡ 0(mod 2)≡

Now, in continuation with this, it is proved here 
that the Cartesian product of the cycle  and a 
path , such that the domination set of the 

product is 

5C

nP 5 nC P

5 n
5n 1(C P )

3
−⎢γ = ⎢⎣ ⎦

⎥
⎥

=

 whenever ; 

using the mathematical induction on n and starting 
with the initial n = 4 we have  which 

holds. Furthering to the  step we have 

n 4≥

5 4(C P ) 6γ

thk

5 k
5k 1 the relation also holds for the 

step. Then going toward the inductive step thk

k 1+ , and we have 5 k 1
5k 4(C P )

3+
+⎢γ = ⎢⎣ ⎦

⎥
⎥  which 

holds and proves the theorem. 

P )
3
−⎢ ⎥γ = ⎢ ⎥⎣ ⎦

3. Conclusion 
Three new results are presented in this note, 

namely, 3 n(C P ) nγ = , 4 n(C P ) nγ =  and  

5 k
5k 1(C P )

3
−⎢ ⎥γ = ⎢ ⎥⎣ ⎦

. As more general results of 

the type are NP-complete hence partial results are 
thee only way have some structure in the 
domination theory of Cartesian products. 
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