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Let  denote the domination number of the graph G  and let denote the domination number of the γ(G) γ(G H)
Cartesian product of the graphs and . Here in this note; let denote the cycle with three vertices and similarly, 

let denote the cycle with n  vertices. The domination number of the Cartesian product of two even cycles  and 

 is characterized here, where m< , with   such that 

G H 3C

nC mC

nC n m 4≥

m n
mnγ(C C )=
4

 

if and only if  divides 2 mn
4

 , that is,   iff 
mn2 |
4

. 
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1. Introduction 
A graph  is defined by a set of vertices  

and an edge set E(   and an incidence relation 
which associates with each edge either one or two 
vertices called end vertices or end points [5]. A 
graph is simple if it has no loops and no multiple 
edges. 

G V(G)
G)

A set of vertices D  of a graph   is called a 
dominating set if every vertex of G  is dominated by 
some vertex in D . Equivalently, a set  of vertices 
of a graph   is dominating set if every vertex in 

  is adjacent to some vertex . The 
domination number of a graph , denoted by 

, is the cardinality of a smallest dominating set 
of a graph G . A dominating set  with |D|=   
is called the minimum dominating set [9]. 

G

D
G

V(G)-D V D∈
G

γ(G)
D γ(G)

The Cartesian product of simple graphs G  and 
 is the graph  whose vertex set is 

 and whose edge set is the set of all 

pairs  whenever  and 
 or  and , that is   

H G H
V(G)×V(H)

(a,x)(b,y) E(G×H)∈ x=y
ab E(G)∈ a=b xy E(H)∈

x=y and ab G
E(G×H)= {(a,x),(b,y)} |

a=b and xy H
∈⎧ ⎫

⎨ ⎬∈⎩ ⎭
 

For , set  and for , 
set , the sets  and  are called 
layers of  or H  respectively [1,2]. For , the 
Cartesian product  is polyhedral graph 
called the n-prism; the 3-prism,  4-prism, and 5-
prism are commonly called the triangular prism, 
cube and the pentagonal prism .  

x V(H)∈ xG =G×{x} a V(G)∈

aH ={a}×H xG aH
G n 3≥

nC K2

n n

In 2004, A. Kloboucar determined the total 
domination of the Cartesian product of paths, i.e., 

 and  such that 5P P 6P P

t 5 n
3n+4γ (P P ) = , n 6

2
⎢ ⎥ ≠⎢ ⎥⎣ ⎦

 and  t 6 nγ (P P )=

12n+21
7

⎢ ⎥
⎢ ⎥⎣ ⎦

 [11]. Recently, in a private 
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communication [10], Daniel Gonçalves,  Alexandre 
Pinlou, Michaël Rao and Stéphan Thomassé 
calculated the domination number of all n n×  grid 
graphs and proved the Chang’s conjecture for 

every n,m
(n+2)(m+2)16 n m, γ(G )= -4

5
⎢ ⎥≤ ≤ ⎢ ⎥⎣ ⎦

 [10].  

On domination theory of Cartesian product of 
graphs;  there are two fundamental problems, one 
is the conjecture of Vizing, which is still open, 
stated in [1,2]  such as  that is 
the domination number of the Cartesian product of 
the two graphs is at least the product of their 
domination numbers and for many partial results 
see [3,4]. The other problem is to determine the 
domination number of certain Cartesian products of 
graphs [5,6]. Also this problem seems to be a 
difficult one and even for a subgraph of   is 
NP-complete and the problem itself is also open. 

γ(G H) γ(G)γ(H)≥

m nP P

2. Main Results 
Throughout this note, the vertices of the cycles 

are indexed as 0, . The Cartesian product 
grid generated by the product of two cycles is also 
indexed from the set . 

1,2,...,n-1

{0,1,2,...,n-1}×{0,1,2,...,n-1}

Lemma 1.  Let m and be positive even integers 
with  and , then there exists a minimum 

dominating set  
∪ ∪

 

n
m<n m 4≥

0 1 2

3 m-1

D={I
{I ×

×J} {I ×K} {I ×L}
P} ... {I ×J } ..

∪ ∪

∪ ∪

}≡

(i , j)|i {0} 0(mod4)}

≡

.

Proof. Let  be the minimum dominating set of 
the Cartesian product of two even cycles  and 

. As the Cartesian product contains m copies of 
and conversely copies of cycle .  Let 

 be the set denoting i ,  the 
horizontal index which runs in the interval 

, hence m- of layers.  Let each i  
represents a layer  with the total number of  

  layers with each layer containing vertices of 
the dominating set D . Let  J=  and 
its Cartesian product with the set  , that is,  

 and such 
vertices belong to the dominating set  of 
the layer. For layer, let 

 and its Cartesian product 
with the set  , that is, 

  and such 
vertices belong to the dominating set 

D
mC

nC

nC n mC
I={i |0 i m-1}≤ ≤

0 i m-1≤ ≤ 1 nC -

inC

m-1
{ j | j 0(mod4)

0I ={0}

0 0 0I ×J={ and j∈ ≡

0D D⊂

0nC -
1nC -

K={k | k 2(mod4)}

1I ={1}

1 1 1I ×K = {(i ,k) |i {1} and∈ k 2(mod4)}≡

1D D∈  of the 
layer. For  layer, let  L={  

and its Cartesian product with the set   , that 
is,   and such 
vertices belong to the dominating set   of 
the  layer. For layer, let 

 and its Cartesian product 
with the set  , that is, 

 and such 
vertices belong to the dominating set  of 
the  layer. These four sets   and P  will 

repeat respectively with index i  if i> . Hence 
. 

1nC -
2nC - l | l 1(mod4)}≡

2I ={2}

2 2 2I ×L={(i ,l) | i {2} and l 1(mod4)}∈ ≡

4)}≡

2D D⊂

2nC -
3nC -

P={p | p 3(mod

3I ={3}

3 3 3I ×P={(i , p) | i {3} and p 3(mod4)}∈ ≡

3D D⊂

3nC - J, K, L

4
m-1

ii=0D= DU

m, n 4≥

mn

m

1

Theorem 2: [S. Klavzar and N. Seifter [9]]:  
, where n 4 . 4 nγ(C C )=n ≥

Theorem 3: For any even integer  and 

with m ,  <n m n
mnγ(C C )=
4

 if and only if 2|
4

.  

Proof : Let the grid generated by the Cartesian 
product of the two even cycles C  and , where 

 and , be indexed by i  which run in the 
interval  for the m  values. Let the 
domination set contains the vertices of the form 

  where the 
indices  and  will repeat respectively for 
larger values. Indices are of the type 

, , 
 and P={  with 

the intervals 0 , and 
 . Working with the four indices, namely; 
  and two cases arise; one when  and 
the other is when 4 does not divide n . In case 

when 4 divides n , each layer contains 

nC
m<n m 4≥

0 i m-1≤ ≤

0 1 2 3 m-D={(i , j),(i ,k),(i ,l),(i ,p),...,(i ..}

≤ ≤

, j),.
j,k,l p
m

J={ j | j 0(mod4)}≡ K={k | k 2(mod4)}≡
L={l | l 1(mod4)}≡ p | p 3(mod4)}≡

j n-1, 0 k n-1, 0 l n-1≤ ≤ ≤ ≤
0 p n-1≤ ≤
j,k,l p 4|n

inC - n
4

 

vertices belonging the domination set . 

Hence we have total number of vertices 

iD D⊂

nm
4

⎛
⎜
⎝ ⎠

⎞
⎟ , 
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Figure 1. 4-prism and 8-prism graphs . 

 

hence we have m n
mnγ(C C )=
4

  when 4 divides n . 

In the case, where n  is not divisible by 4 then half 

of the layer contains 
inC −

m n
2 4
⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠

⊂

  number of 

vertices belonging the domination set  

and half of the layer contains 

i=2t-2D D

inC - m n
2 4
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 

number of vertices belonging the domination set 
 , where   ; consequently we 

have 
i=2t-1D D⊂ t=1,2,...

γ

m n m n+
2 4 2 4
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦

 

m n n+
2 4 4
⎛ ⎞⎡ ⎤ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎠

 

mn
4

 

Hence 

m n
mnγ(C C )=
4

 

Prisms graphs are graphs of the type , 
where  is the Cartesian product of the path 
of length m and the cycle of length n  [8]. Let  be 
the complete graph on two nodes, that is,  

then, the Cartesian product is an n prism, 
where 4-prism is Cartesian product of 

which is a cube and the prism is 
Cartesian product of which is a octagonal 
prism depicted in Figure 1 above.  

m nP C

m nP C

2K

2 2K =P

2K Cn

4

4

-

2K C 8-

2K C

Theorem 4. Let n , and let 4| , then 4≥ n

n 2
n . (C K )=
2

Proof.  Let n , and let , then it is proved here 

that 

4≥ 4|n

n 2
nγ(C K )=
2

. With the basic initial inductive 

step we will have . As 4| , then 
and the inductive step would be 

which holds for all k=  . Now 
leading the last inductive step we have 

 which also holds for all 

values of k .  Hence we have 

4 2γ(C K )=2 n
n=4k thk

4k 2γ(C K )=2k 1,2,...

4k+1 2γ(C K )=2(k+1)

n 2
nγ(C K )=
2

, 

n 4∀ ≥  with 4| . n

M. S. Jacobson and L. F. Kinch in [6] proved the 
limiting value of the domination number 

m nm
n

γ(P P ) 1=lim mn 5
→∞
→∞

as the number m  and  

gets bigger. 

n

Here, in this note, a construction of a 
domination set is proposed in lemma 1 above and 
with this construction following is proposed. 
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Proposition 5 m nm
n

γ(C C ) 1=lim mn 4
→∞
→∞

. 

3. Conclusion 
In this note, initial results match with one of the 

results of S. Klavzar and N. Seifter [9] , stated in 
theorem 2 above, when . The limiting value of 
the Cartesian product of two cycles  and , 
proved above in theorem 3, is also improved in this 
note in proposition 5 which was earlier suggested 
by S. Klavzar and N. Seifter in  [9]. A very little work 
has been done so far on the domination number of 
the prisms over cycles, , where n  is of the form 
4k where k= 1, 2. In this note a fresh result is 
proved in theorem 4 above. 

m=4
mC nC

nC
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