ON DOMINATION NUMBER OF CARTESIAN PRODUCT OF EVEN CYCLES

*A. D. JUMANI
Department of Mathematics, Shah Abdul Latif University, Khairpur 66020, Pakistan

(Received October 11, 2011 and accepted in revised form December 02, 2011)

Abstract

Let $\gamma(G)$ denote the domination number of the graph G and let $\gamma(G \square H)$ denote the domination number of the Cartesian product of the graphs G and H . Here in this note; let C_{3} denote the cycle with three vertices and similarly, let C_{n} denote the cycle with n vertices. The domination number of the Cartesian product of two even cycles C_{m} and C_{n} is characterized here, where $m<n$, with $m \geq 4$ such that

$\gamma\left(C_{m} \square C_{n}\right)=\frac{m n}{4}$
if and only if 2 divides $\frac{m n}{4}$, that is, iff $2 \left\lvert\, \frac{m n}{4}\right.$.

Keywords: Cartesian product, Domination number, Vizing's conjecture

1. Introduction

A graph G is defined by a set of vertices $V(G)$ and an edge set $E(G)$ and an incidence relation which associates with each edge either one or two vertices called end vertices or end points [5]. A graph is simple if it has no loops and no multiple edges.

A set of vertices D of a graph G is called a dominating set if every vertex of G is dominated by some vertex in D. Equivalently, a set D of vertices of a graph G is dominating set if every vertex in $\mathrm{V}(\mathrm{G})$ - D is adjacent to some vertex $\mathrm{V} \in \mathrm{D}$. The domination number of a graph G, denoted by $\gamma(G)$, is the cardinality of a smallest dominating set of a graph G. A dominating set D with $|\mathrm{D}|=\mathrm{\gamma}(\mathrm{G})$ is called the minimum dominating set [9].

The Cartesian product of simple graphs G and H is the graph $G \square H$ whose vertex set is $\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{H})$ and whose edge set is the set of all
pairs $(a, x)(b, y) \in E(G \times H) \quad$ whenever $\quad x=y \quad$ and $a b \in E(G)$ or $a=b$ and $x y \in E(H)$, that is
$E(G \times H)=\left\{\{(a, x),(b, y)\} \quad \begin{array}{l}x=y \text { and } a b \in G \\ a=b \text { and } x y \in H\end{array}\right\}$

For $x \in V(H)$, set $G_{x}=G \times\{x\}$ and for $a \in V(G)$, set $H_{a}=\{a\} \times H$, the sets G_{x} and H_{a} are called layers of G or H respectively [1,2]. For $n \geq 3$, the Cartesian product $\mathrm{C}_{\mathrm{n}} \square \mathrm{K}_{2}$ is polyhedral graph called the n-prism; the 3 -prism, 4 -prism, and 5 prism are commonly called the triangular prism, cube and the pentagonal prism .

In 2004, A. Kloboucar determined the total domination of the Cartesian product of paths, i.e., $P_{5} \square P_{n} \quad$ and $\quad P_{6} \square P_{n} \quad$ such that $Y_{t}\left(P_{5} \square P_{n}\right)=\left\lfloor\frac{3 n+4}{2}\right\rfloor, n \neq 6 \quad$ and $\quad Y_{t}\left(P_{6} \square P_{n}\right)=$ $\left\lfloor\frac{12 n+21}{7}\right\rfloor \quad[11] . \quad$ Recently, in a private

[^0]communication [10], Daniel Gonçalves, Alexandre Pinlou, Michaël Rao and Stéphan Thomassé calculated the domination number of all $n \times n$ grid graphs and proved the Chang's conjecture for every $16 \leq n \leq m, \gamma\left(G_{n, m}\right)=\left\lfloor\frac{(n+2)(m+2)}{5}\right\rfloor-4$ [10].

On domination theory of Cartesian product of graphs; there are two fundamental problems, one is the conjecture of Vizing, which is still open, stated in [1,2] such as $\gamma(G \square H) \geq \gamma(G) \gamma(H)$ that is the domination number of the Cartesian product of the two graphs is at least the product of their domination numbers and for many partial results see $[3,4]$. The other problem is to determine the domination number of certain Cartesian products of graphs [5,6]. Also this problem seems to be a difficult one and even for a subgraph of $P_{m} \square P_{n}$ is NP-complete and the problem itself is also open.

2. Main Results

Throughout this note, the vertices of the cycles are indexed as $0,1,2, \ldots, n-1$. The Cartesian product grid generated by the product of two cycles is also indexed from the set $\{0,1,2, \ldots, n-1\} \times\{0,1,2, \ldots, n-1\}$.

Lemma 1. Let m and n be positive even integers with $m<n$ and $m \geq 4$, then there exists a minimum
dominating set

$$
\begin{aligned}
& D=\left\{I_{0} \times J\right\} \cup\left\{I_{1} \times K\right\} \cup\left\{I_{2} \times L\right\} \\
& \cup\left\{I_{3} \times P\right\} \cup \ldots \cup\left\{I_{m-1} \times J\right\} \cup \ldots
\end{aligned}
$$

Proof. Let D be the minimum dominating set of the Cartesian product of two even cycles C_{m} and C_{n}. As the Cartesian product contains m copies of C_{n} and conversely n copies of cycle C_{m}. Let $I=\{i \mid 0 \leq i \leq m-1\}$ be the set denoting i, the horizontal index which runs in the interval $0 \leq \mathrm{i} \leq \mathrm{m}-1$, hence m -1of C_{n}-layers. Let each i represents a layer $C_{n_{i}}$ with the total number of $m-1$ layers with each layer containing vertices of the dominating set D. Let $J=\{j \mid j \equiv 0(\bmod 4)\}$ and its Cartesian product with the set $\mathrm{I}_{0}=\{0\}$, that is, $\mathrm{I}_{0} \times \mathrm{J}=\left\{\left(\mathrm{i}_{0}, \mathrm{j}\right) \mid \mathrm{i}_{0} \in\{0\}\right.$ and $\left.\mathrm{j} \equiv 0(\bmod 4)\right\} \quad$ and such vertices belong to the dominating set $D_{0} \subset D$ of the $\quad \mathrm{C}_{\mathrm{n}_{0}}$-layer. For $\quad \mathrm{C}_{\mathrm{n}_{1}}$-layer, let $\mathrm{K}=\{\mathrm{k} \mid \mathrm{k} \equiv 2(\bmod 4)\}$ and its Cartesian product with the set $I_{1}=\{1\}$, that is,
$\mathrm{l}_{1} \times \mathrm{K}=\left\{\left(\mathrm{i}_{1}, \mathrm{k}\right) \mid \mathrm{i}_{1} \in\{1\}\right.$ and $\left.\mathrm{k} \equiv 2(\bmod 4)\right\}$ and such vertices belong to the dominating set $D_{1} \in D$ of the $C_{n_{1}}$ - layer. For $C_{n_{2}}$ - layer, let $L=\{I \mid I \equiv 1(\bmod 4)\}$ and its Cartesian product with the set $I_{2}=\{2\}$, that is, $I_{2} \times L=\left\{\left(\mathrm{i}_{2}, \mathrm{I}\right) \mid \mathrm{i}_{2} \in\{2\}\right.$ and $\left.\mathrm{I} \equiv 1(\bmod 4)\right\}$ and such vertices belong to the dominating set $D_{2} \subset D$ of the $\quad C_{n_{2}}$-layer. For $C_{n_{3}}$-layer, let $P=\{p \mid p \equiv 3(\bmod 4)\}$ and its Cartesian product with the set $I_{3}=\{3\}$, that is, $I_{3} \times P=\left\{\left(i_{3}, p\right) \mid i_{3} \in\{3\}\right.$ and $\left.p \equiv 3(\bmod 4)\right\}$ and such vertices belong to the dominating set $D_{3} \subset D$ of the $C_{n_{3}}$-layer. These four sets J, K, L and P will repeat respectively with index i if $i>4$. Hence $D=U_{i=0}^{m-1} D_{i}$.

Theorem 2: [S. Klavzar and N. Seifter [9]]: $\gamma\left(C_{4} \square C_{n}\right)=n$, where $n \geq 4$.

Theorem 3: For any even integer $m, n \geq 4$ and with $m<n, \gamma\left(C_{m} \square C_{n}\right)=\frac{m n}{4}$ if and only if $2 \left\lvert\, \frac{m n}{4}\right.$.

Proof : Let the grid generated by the Cartesian product of the two even cycles C_{m} and C_{n}, where $m<n$ and $m \geq 4$, be indexed by i which run in the interval $0 \leq i \leq m-1$ for the m values. Let the domination set contains the vertices of the form $D=\left\{\left(i_{0}, j\right),\left(i_{1}, k\right),\left(i_{2}, l\right),\left(i_{3}, p\right), \ldots,\left(i_{m-1}, j\right), \ldots\right\} \quad$ where the indices j, k, l and p will repeat respectively for larger m values. Indices are of the type $\mathrm{J}=\{\mathrm{j} \mid \mathrm{j} \equiv 0(\bmod 4)\}, \quad \mathrm{K}=\{\mathrm{k} \mid \mathrm{k} \equiv 2(\bmod 4)\}$, $L=\{I \mid I \equiv 1(\bmod 4)\}$ and $P=\{p \mid p \equiv 3(\bmod 4)\}$ with the intervals $0 \leq j \leq n-1,0 \leq k \leq n-1,0 \leq I \leq n-1$, and $0 \leq \mathrm{p} \leq \mathrm{n}-1$. Working with the four indices, namely; $\mathrm{j}, \mathrm{k}, \mathrm{I}$ and ptwo cases arise; one when $4 \mid \mathrm{n}$ and the other is when 4 does not divide n. In case when 4 divides n, each $C_{n_{i}}$ - layer contains $\frac{n}{4}$ vertices belonging the domination set $D_{i} \subset D$. Hence we have total number of vertices $m\left(\frac{n}{4}\right)$,

Figure 1. 4-prism and 8-prism graphs .
hence we have $\gamma\left(C_{m} \square C_{n}\right)=\frac{m n}{4}$ when 4 divides n. In the case, where n is not divisible by 4 then half of the $C_{n_{i}}$ - layer contains $\frac{m}{2}\left(\left\lceil\frac{n}{4}\right\rceil\right)$ number of vertices belonging the domination set $D_{i=2 t-2} \subset D$ and half of the $C_{n_{i}}$ - layer contains $\frac{m}{2}\left(\left\lfloor\frac{n}{4}\right\rfloor\right)$ number of vertices belonging the domination set $D_{i=2 t-1} \subset D$, where $t=1,2, \ldots ;$ consequently we have
$\frac{\mathrm{m}}{2}\left\lceil\frac{\mathrm{n}}{4}\right\rceil+\frac{\mathrm{m}}{2}\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$
$\frac{\mathrm{m}}{2}\left(\left\lfloor\frac{\mathrm{n}}{4}\right\rceil+\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor\right)$
$\frac{m n}{4}$

Hence
$Y\left(C_{m} \square C_{n}\right)=\frac{m n}{4}$

Prisms graphs are graphs of the type $P_{m} \square C_{n}$, where $P_{m} \square C_{n}$ is the Cartesian product of the path of length m and the cycle of length n [8]. Let K_{2} be the complete graph on two nodes, that is, $\mathrm{K}_{2}=\mathrm{P}_{2}$
then, the Cartesian product $\mathrm{K}_{2} \square \mathrm{C}_{\mathrm{n}}$ is an n -prism, where 4-prism is Cartesian product of $\mathrm{K}_{2} \square \mathrm{C}_{4}$ which is a cube and the 8 -prism is Cartesian product of $\mathrm{K}_{2} \square \mathrm{C}_{4}$ which is a octagonal prism depicted in Figure 1 above.

Theorem 4. Let $n \geq 4$, and let $4 \mid n$, then $\mathrm{Y}\left(\mathrm{C}_{\mathrm{n}} \square \mathrm{K}_{2}\right)=\frac{\mathrm{n}}{2}$.

Proof. Let $\mathrm{n} \geq 4$, and let $4 \mid \mathrm{n}$, then it is proved here that $\gamma\left(C_{n} \square K_{2}\right)=\frac{n}{2}$. With the basic initial inductive step we will have $\gamma\left(C_{4} \square K_{2}\right)=2$. As $4 \mid n$, then $\mathrm{n}=4 \mathrm{k}$ and the k_{th} inductive step would be $\gamma\left(\mathrm{C}_{4 \mathrm{k}} \square \mathrm{K}_{2}\right)=2 \mathrm{k}$ which holds for all $\mathrm{k}=1,2, \ldots$. Now leading the last inductive step we have $\gamma\left(\mathrm{C}_{4 \mathrm{k}+1} \square \mathrm{~K}_{2}\right)=2(\mathrm{k}+1)$ which also holds for all values of k. Hence we have $\gamma\left(C_{n} \square K_{2}\right)=\frac{n}{2}$, $\forall \mathrm{n} \geq 4$ with $4 \mid \mathrm{n}$.
M. S. Jacobson and L. F. Kinch in [6] proved the limiting value of the domination number $\lim _{n \rightarrow \infty}^{m \rightarrow \infty} \frac{\gamma\left(P_{m} \square P_{n}\right)}{m n}=\frac{1}{5}$ as the number m and n gets bigger.

Here, in this note, a construction of a domination set is proposed in lemma 1 above and with this construction following is proposed.

Proposition $5 \lim _{n \rightarrow \infty}^{m \rightarrow \infty} \frac{\gamma\left(C_{m} \square C_{n}\right)}{m n}=\frac{1}{4}$.

3. Conclusion

In this note, initial results match with one of the results of S. Klavzar and N. Seifter [9], stated in theorem 2 above, when $\mathrm{m}=4$. The limiting value of the Cartesian product of two cycles C_{m} and C_{n}, proved above in theorem 3, is also improved in this note in proposition 5 which was earlier suggested by S. Klavzar and N. Seifter in [9]. A very little work has been done so far on the domination number of the prisms over cycles, C_{n}, where n is of the form 4 k where $\mathrm{k}=1,2$. In this note a fresh result is proved in theorem 4 above.

References

[1] V. G. Vizing, Vychisl, Sistemy 90, 63 (1963) 30.
[2] V. G. Vizing, Uspehi Mat. Nauk 23 (1986) 117.
[3] M. El-Zahar and C. M. Pareek, Ars Combin. 31 (1991) 223.
[4] R.J. Faudree and R. H. Schelp, Congr. Numer. 79 (1990) 29.
[5] W. T. Tutte, Graph Theory, Cambridge University Press (2001).
[6] M. S. Jacobson and L. F. Kinch, J. Graph Theory 10 (1986) 97.
[7] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer (2010).
[8] J.A. Gallian, Electronic J. Combinatorics, DS6 (Jan.3, 2007) 1.
[9] S. Klavzar and N. Seifter, Discrete Applied Mathematics 59 (1995) 97.
[10] D. Gonçalves, A. Pinlou, M. Rao and S. Thomassé, The Domination Number of Grids, 2011arXiv1102.5206G
[11] A. Klobucar, Mathematical Communications 9 (2004) 35.

[^0]: * Corresponding author : alidino.jumani@salu.edu.pk

