The Nucleus 48, No. 4 (2011) 269-272

The Nucleus A Quarterly Scientific Journal of Pakistan Atomic Energy Commission NCLEAM, ISSN 0029-5698

ON DOMINATION NUMBER OF CARTESIAN PRODUCT OF EVEN CYCLES

*A. D. JUMANI

Department of Mathematics, Shah Abdul Latif University, Khairpur 66020, Pakistan

(Received October 11, 2011 and accepted in revised form December 02, 2011)

Let $\gamma(G)$ denote the domination number of the graph G and let $\gamma(G \square H)$ denote the domination number of the Cartesian product of the graphs G and H. Here in this note; let C_3 denote the cycle with three vertices and similarly, let C_n denote the cycle with n vertices. The domination number of the Cartesian product of two even cycles C_m and C_n is characterized here, where m < n, with $m \ge 4$ such that

 $\gamma(C_m \square C_n) = \frac{mn}{4}$

if and only if $2 \, \mbox{divides } \frac{mn}{4}$, that is, $\ \mbox{iff} \, 2 \, \big| \, \frac{mn}{4}$.

Keywords: Cartesian product, Domination number, Vizing's conjecture

1. Introduction

A graph G is defined by a set of vertices V(G) and an edge set E(G) and an incidence relation which associates with each edge either one or two vertices called end vertices or end points [5]. A graph is simple if it has no loops and no multiple edges.

A set of vertices D of a graph G is called a *dominating set* if every vertex of G is dominated by some vertex in D. Equivalently, a set D of vertices of a graph G is dominating set if every vertex in V(G)-D is adjacent to some vertex $V \in D$. The domination number of a graph G, denoted by $\gamma(G)$, is the cardinality of a smallest dominating set of a graph G. A dominating set D with $|D|=\gamma(G)$ is called the minimum dominating set [9].

The Cartesian product of simple graphs G and H is the graph $G \square H$ whose vertex set is $V(G) \times V(H)$ and whose edge set is the set of all

pairs $(a,x)(b,y) \in E(G \times H)$ whenever x=y and $ab \in E(G)$ or a=b and $xy \in E(H)$, that is

$$\mathsf{E}(\mathsf{G}\mathsf{\times}\mathsf{H})=\left\{\{(\mathsf{a},\mathsf{x}),(\mathsf{b},\mathsf{y})\}\mid \begin{array}{l}\mathsf{x=y} \text{ and } \mathsf{ab}\in\mathsf{G}\\\mathsf{a=b} \text{ and } \mathsf{xy}\in\mathsf{H}\right\}$$

For $x \in V(H)$, set $G_x = G \times \{x\}$ and for $a \in V(G)$, set $H_a = \{a\} \times H$, the sets G_x and H_a are called layers of G or H respectively [1,2]. For $n \ge 3$, the Cartesian product $C_n \square K_2$ is polyhedral graph called the n-prism; the 3-prism, 4-prism, and 5prism are commonly called the triangular prism, cube and the pentagonal prism.

In 2004, A. Kloboucar determined the total domination of the Cartesian product of paths, i.e., $P_5 \square P_n$ and $P_6 \square P_n$ such that $\gamma_t(P_5 \square P_n) = \left\lfloor \frac{3n+4}{2} \right\rfloor$, $n \neq 6$ and $\gamma_t(P_6 \square P_n) = \left\lfloor \frac{12n+21}{7} \right\rfloor$ [11]. Recently, in a private

^{*} Corresponding author : alidino.jumani@salu.edu.pk

On domination number of cartesian product of even cycles

communication [10], Daniel Gonçalves, Alexandre Pinlou, Michaël Rao and Stéphan Thomassé calculated the domination number of all $n \times n$ grid graphs and proved the Chang's conjecture for

every
$$16 \le n \le m$$
, $\gamma(G_{n,m}) = \left\lfloor \frac{(n+2)(m+2)}{5} \right\rfloor -4$ [10].

On domination theory of Cartesian product of graphs; there are two fundamental problems, one is the conjecture of Vizing, which is still open, stated in [1,2] such as $\gamma(G \square H) \ge \gamma(G)\gamma(H)$ that is the domination number of the Cartesian product of the two graphs is at least the product of their domination numbers and for many partial results see [3,4]. The other problem is to determine the domination number of certain Cartesian products of graphs [5,6]. Also this problem seems to be a difficult one and even for a subgraph of $P_m \square P_n$ is NP-complete and the problem itself is also open.

2. Main Results

Throughout this note, the vertices of the cycles are indexed as 0,1,2,...,n-1. The Cartesian product grid generated by the product of two cycles is also indexed from the set $\{0,1,2,...,n-1\}\times\{0,1,2,...,n-1\}$.

Lemma 1. Let m and n be positive even integers with m<n and $m \ge 4$, then there exists a minimum

 $\begin{array}{l} \text{dominating set} \quad \begin{array}{l} \mathsf{D}{=}\{I_0{\times}J\} \cup \{I_1{\times}K\} \cup \{I_2{\times}L\} \\ \cup \{I_3{\times}P\} \cup ... \cup \{I_{m{\cdot}1}{\times}J\} \cup ... \end{array}$

Proof. Let D be the minimum dominating set of the Cartesian product of two even cycles C_m and C_n. As the Cartesian product contains m copies of C_n and conversely $n \text{ copies of cycle } C_m$. Let $I=\{i \mid 0 \le i \le m-1\}$ be the set denoting i, the horizontal index which runs in the interval $0 \le i \le m-1$, hence m-1of C_n -layers. Let each i represents a layer $\boldsymbol{C}_{\boldsymbol{n}_i}$ with the total number of m-1 layers with each layer containing vertices of the dominating set D. Let $J=\{j \mid j \equiv 0 \pmod{4}\}$ and its Cartesian product with the set $I_0 = \{0\}$, that is, $I_0 \times J = \{(i_0, j) | i_0 \in \{0\} \text{ and } j \equiv 0 \pmod{4}\}$ and such vertices belong to the dominating set $D_0 \subset D$ of C_{no} - layer. C_{n₁} - layer, the For let $K=\{k \mid k \equiv 2 \pmod{4}\}$ and its Cartesian product with the l₁={1} , set that is.

 $I_1 \times K = \{(i_1, k) | i_1 \in \{1\} \text{ and } k \equiv 2 \pmod{4} \}$ and such vertices belong to the dominating set $D_1 \in D$ of the $C_{n_1} \text{-} \text{layer. For} \quad C_{n_2} \text{-} \text{layer, let} \quad L=\{I \mid I \equiv 1(mod 4)\}$ and its Cartesian product with the set $I_2 = \{2\}$, that is, $I_2 \times L=\{(i_2, I) \mid i_2 \in \{2\} \text{ and } I \equiv 1 \pmod{4}\}$ and such vertices belong to the dominating set $D_2 \subset D$ of the C_{no} - layer. For C_{n3} - layer, let $P=\{p \mid p \equiv 3 \pmod{4}\}$ and its Cartesian product with the set l₃={3} that is. $I_3 \times P{=}\{(i_3,p) \mid i_3 \in \{3\} \text{ and } p \equiv 3 (mod4)\}$ and such vertices belong to the dominating set $D_3 \subset D$ of the C_{n_3} - layer. These four sets J, K, L and P will repeat respectively with index i if i>4. Hence $D = U_{i=0}^{m-1} D_i$.

Theorem 2: [S. Klavzar and N. Seifter [9]]: $\gamma(C_4 \square C_n)=n$, where $n \ge 4$.

Theorem 3: For any even integer $m, n \ge 4$ and with m < n, $\gamma(C_m \square C_n) = \frac{mn}{4}$ if and only if $2|\frac{mn}{4}$.

Proof : Let the grid generated by the Cartesian product of the two even cycles C_m and C_n , where m<n and $m \ge 4$, be indexed by i which run in the interval $0 \le i \le m-1$ for the m values. Let the domination set contains the vertices of the form $D=\{(i_0, j), (i_1, k), (i_2, l), (i_3, p), \dots, (i_{m-1}, j), \dots\}$ where the indices j,k,l and p will repeat respectively for larger m values. Indices are of the type $K=\{k \mid k \equiv 2 \pmod{4}\},\$ $J=\{j \mid j \equiv 0 \pmod{4}\},\$ $L=\{I | I \equiv 1 \pmod{4}\}$ and $P=\{p | p \equiv 3 \pmod{4}\}$ with the intervals $0 \le j \le n-1$, $0 \le k \le n-1$, $0 \le l \le n-1$, and $0 \le p \le n-1$. Working with the four indices, namely; j,k,l and p two cases arise; one when 4|n and the other is when 4 does not divide n. In case when 4 divides n, each C_{n_i} -layer contains $\frac{n}{4}$ vertices belonging the domination set $D_i \subset D$. Hence we have total number of vertices $m\left(\frac{n}{4}\right)$,

Figure 1. 4-prism and 8-prism graphs .

hence we have $\gamma(C_m \square C_n) = \frac{mn}{4}$ when 4 divides n. In the case, where n is not divisible by 4 then half of the C_{n_i} – layer contains $\frac{m}{2} \left(\left\lceil \frac{n}{4} \right\rceil \right)$ number of vertices belonging the domination set $D_{i=2t-2} \subset D$ and half of the C_{n_i} -layer contains $\frac{m}{2} \left(\left\lfloor \frac{n}{4} \right\rfloor \right)$ number of vertices belonging the domination set $D_{i=2t-1} \subset D$, where t=1,2,...; consequently we have

$$\frac{\mathbf{m}}{2} \left\lceil \frac{\mathbf{n}}{4} \right\rceil + \frac{\mathbf{m}}{2} \left\lfloor \frac{\mathbf{n}}{4} \right\rfloor$$
$$\frac{\mathbf{m}}{2} \left(\left\lceil \frac{\mathbf{n}}{4} \right\rceil + \left\lfloor \frac{\mathbf{n}}{4} \right\rfloor \right)$$

 $\frac{mn}{4}$

Hence

 $\gamma(C_m \square C_n) = \frac{mn}{4}$

Prisms graphs are graphs of the type $P_m \square C_n$, where $P_m \square C_n$ is the Cartesian product of the path of length m and the cycle of length n [8]. Let K_2 be the complete graph on two nodes, that is, K_2 =P₂

then, the Cartesian product $K_2 \square C_n$ is an n-prism, where 4-prism is Cartesian product of $K_2 \square C_4$ which is a cube and the 8-prism is Cartesian product of $K_2 \square C_4$ which is a octagonal prism depicted in Figure 1 above.

Theorem 4. Let $n \ge 4$, and let 4|n, then $\gamma(C_n \square K_2) = \frac{n}{2}$.

Proof. Let $n \ge 4$, and let 4|n, then it is proved here that $\gamma(C_n \square K_2) = \frac{n}{2}$. With the basic initial inductive step we will have $\gamma(C_4 \square K_2) = 2$. As 4|n, then n=4k and the k_{th} inductive step would be $\gamma(C_{4k} \square K_2) = 2k$ which holds for all k=1,2,.... Now leading the last inductive step we have $\gamma(C_{4k+1} \square K_2) = 2(k+1)$ which also holds for all values of k. Hence we have $\gamma(C_n \square K_2) = \frac{n}{2}$, $\forall n \ge 4$ with 4|n.

M. S. Jacobson and L. F. Kinch in [6] proved the limiting value of the domination number $\underset{n\to\infty}{\lim} \frac{\gamma(P_m\,\square\,P_n)}{mn} = \frac{1}{5} \text{ as the number } m \text{ and } n$ gets bigger.

Here, in this note, a construction of a domination set is proposed in lemma 1 above and with this construction following is proposed.

Proposition 5
$$\lim_{n\to\infty}^{m\to\infty} \frac{\gamma(C_m \Box C_n)}{mn} = \frac{1}{4}$$
.

3. Conclusion

In this note, initial results match with one of the results of S. Klavzar and N. Seifter [9], stated in theorem 2 above, when m=4. The limiting value of the Cartesian product of two cycles C_m and C_n , proved above in theorem 3, is also improved in this note in proposition 5 which was earlier suggested by S. Klavzar and N. Seifter in [9]. A very little work has been done so far on the domination number of the prisms over cycles, C_n , where n is of the form 4k where k= 1, 2. In this note a fresh result is proved in theorem 4 above.

References

- V. G. Vizing, Vychisl, Sistemy **90**, 63 (1963) 30.
- [2] V. G. Vizing, Uspehi Mat. Nauk 23 (1986) 117.
- [3] M. El-Zahar and C. M. Pareek, Ars Combin. 31 (1991) 223.
- [4] R.J. Faudree and R. H. Schelp, Congr. Numer. 79 (1990) 29.
- [5] W. T. Tutte, Graph Theory, Cambridge University Press (2001).
- [6] M. S. Jacobson and L. F. Kinch, J. Graph Theory **10** (1986) 97.
- [7] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer (2010).
- [8] J.A. Gallian, Electronic J. Combinatorics, DS6 (Jan.3, 2007) 1.
- [9] S. Klavzar and N. Seifter, Discrete Applied Mathematics 59 (1995) 97.
- [10] D. Gonçalves, A. Pinlou, M. Rao and S. Thomassé, The Domination Number of Grids, 2011arXiv1102.5206G
- [11] A. Klobucar, Mathematical Communications 9 (2004) 35.