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The science of chaos is a burgeoning field, and the available methods to investigate the existence of chaos in a time 
series are still being developed. Chaos is also characterized by a positive Lyapunov exponent, which can be thought of 
as a measure of the long-term unpredictability of the system; equilibrium and periodic attractors have a negative 
exponent, whereas a quasiperiodic attractor has an exponent of zero. During the last few decades there have emerged 
several attempts to use the paradigm of ‘chaos’ for a description and forecasting of climatic processes. The 
predictability of daily rainfall is the most difficult task due to the nonlinear complex climate’s dynamical system. This 
paper aims to investigate the existence of chaos in the time series of Lahore precipitation.  
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1. Introduction 
Any influence in nonlinear system may raise the 

complex behavior called chaos. The mere fact that 
simple deterministic systems generically exhibit 
complicated temporal behavior in the presence of 
nonlinearity. Time evolution as a system property 
can be measured by recording the time series. 
Thus, nonlinear time series methods will be the key 
to study nonlinear system and to find its physical 
interpretation. The nonlinear time series methods 
are the correlation dimension method [1, 2] the 
nonlinear prediction method [3-5] including 
deterministic versus stochastic diagram the 
Lyapunov exponent method [6], the Kolmogorov 
entropy method [7] the surrogate data method [8] 
and the linear and  nonlinear redundancies [9, 10] 
Among these the correlation dimension method 
has been the most widely used one for the 
investigation of deterministic chaos in hydrological 
phenomena [11-21] This paper employs Kantz’s 
algorithm [22] to estimate the largest Lyapunov 
exponent, on the summer monsoon daily 
precipitation time series at Lahore. Lyapunov 
exponents are the average exponential rates of 
divergence or convergence of nearby orbits in 
phase space.  

2. Data Analysis 
This paper analyses daily monsoon precipitation 

data at Lahore PBO station (310 33’ N, 740 31’ E) for 

the summer season from June to September for 
the period from 1986 to 2005 inclusive.  We have 
obtained this data from Pakistan Meteorological 
Department. The average of summer monsoon 
rainfall over Lahore is 4.05 mm per day. A time 
trace of precipitation data is plotted in Figure 1. It is 
erratic and distributed randomly. There is a small 
negative linear trend; this small negative trend 
could be due to urbanization. We remove trend by 
subtracting least square fit trend line from the data 
and obtained residuals for further analysis 
particularly spectral analysis [23]. Figure 1 shows 
excessively nonlinear patterns and these patterns 
could be generated by the deterministic nonlinear 
interaction of a few degrees of freedom [24-26] and 
which lead to the possibility of deterministic quasi-
periodicity or “chaos” [27]. 
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Figure 1. Precipitation series of Lahore’s Monsoon season 

from 1986 to 2005. 
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2.1. Power Spectrum 
Spectral analysis displays the intensity or 

variability of the phenomenon versus period or 
frequency. The power spectrum represents the 
amount of energy associated with a specific 
frequency component. It can display for a system 
that is periodic or quasiperiodic by dominating 
frequencies and sub-harmonics. Chaotic and 
stochastic systems are easily distinguishable from 
periodic or quasiperiodic systems. The power 
spectrum proves useful in displaying the serial 
dependence present, in discovering periodic 
phenomena and in diagnosing possible models for 
a series.  

It was developed by Blackman and Tukey [28] 
and is based on the Wiener-Khinchin theorem, 
which states that the Fourier transform of 
autocorrelation of a series yields power spectrum. 
In Blackman and Tukey’s approach, power 
spectrum P(f) is estimated by 

∑ ρ=
−τ

=

π−1

0

j2
jj e)(

j

ifWP f      (1) 

Where ρj is the auto correlation function, τ is the 
maximum lag considered and window length and 
Wj is the Hamming windowing function. Fig. 2 
shows the power spectrum of trend-removed data. 
It shows a broadband and a periodic power 
spectra, whose sharp peaks indicate the presence 
of randomness and noisiness in the time series. 
Fig. 2 also shows a stochastic process which can 
be governed by an autoregressive moving average 
model or a low dimensional deterministic chaotic 
process [29]. 

Power Spectrum : Monsoon.dat
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Figure 2. Power spectrum of trend-removed data against 
frequency. 

2.2. Phase Space Reconstruction 
Phase space and its parameters help to 

investigate nonlinear behavior of a time series. Any 
time series generated by a nonlinear process can 
be considered as the projection on the real axis of 
a higher-dimensional geometrical object that 
describes the behavior of the system under study 
[30]. A point in such a space is defined by a set of 
m dynamical variables. Delay Embedding Theorem 
[31, 32] states that a series of scalar 
measurements x (t) can be used in order to define 
the orbits describing the evolution of the states of 
the system in an m-dimensional Euclidean space. 
The orbits will then consist of points X (t) with 
coordinates. 

X (t)   = [x (t),  x (t+τ), … x (t+ (m− l)τ)]     (2) 

Where τ is the delay time, and the dimension m of 
the vector X (t) is known as the embedding 
dimension. A new time series of the state space 
vector X (1), X (2)… …… X (t) is generated from 
Eq. (2). Each vector X (t) describes a point in an m 
dimensional phase space. Thus, the sequence of 
these vectors defines a trajectory in time as shown 
in Fig. 3. Geometrically, the entire set of these 
points forms a pattern, termed an attractor, in the 
phase space. According to [31] theorem, if d is the 
dimension of the original attractor, it is sufficient 
that the embedding phase space dimension m 
must be greater than or equal to 2d+1. However, in 
reconstructing an attractor from a time series of 
unknown dynamics, the dimensionality of the 
attractor is unknown. It is important that the 
reconstruction must be embedded in a space of 
sufficiently large dimension to represent the 
dynamics completely. 

 

Figure 3. The diagram of evolution in m-dimensional phase 
space. 
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2.3. Determination of Delay Time 
Fraser and Swinney, [33] described a method 

called Average Mutual Information (AMI) for 
estimating delay time. They argue that a better 
value for τ is the value that corresponds to the first 
local minimum mutual information between two 
time series X (t) and X (t+τ). The average mutual 
information is given mathematically as 

∑ ⎥
⎦

⎤
⎢
⎣

⎡
τ+
τ+

τ+=τ
τ+ )(t(t) ))(t((t))(

))(t(t)())(t(t)()(
X,X

2 XPXP
X,XPlogX,XPI   (3) 

P (X (t)) and P (X (t+τ)) are individual 
probabilities for the measurements of X (t) and X 
(t+τ). P (X (t), X (t+τ)) is the joint probability density 
for measurements P (X (t)) and P (X (t+τ)). The 
appropriate time delay τ is defined as the first 
minimum of the average mutual information I (τ ). 
Then the values of X (t) and X (t+τ) are 
independent enough of each other to be useful as 
coordinates in a time delay vector but not so 
independent as to have no connection with each 
other at all. 

We plot AMI of the daily summer rainfall of 
Lahore after removing trend in Fig. 4 As the first 
minima occurs at τ = 4, we infer that delay time for 
our climate data is 4 days. 

 
Figure 4. Average mutual information graph of Trend removed 

monsoon data.  

2.4. Determination of Embedding Dimension  
A useful technique to estimate an optimal value 

of m is to look for the closed false nearest 
neighbors (FNN) in the phase space at a given 
value of m [34] developed an algorithm, called false 
nearest neighbor algorithm that estimates the 
sufficient dimension for phase space 
reconstruction.  

The false nearest neighbor algorithm identifies 
points within a nonlinear time series that seems to 
correlate, or relate, at a certain point in time.  This 
is the same goal as the correlation integral; 
however, the false nearest neighbor could more 
accurately determine a chaotic system since it 
graphs the data on an n-dimensional scale 
represented by n-dimensional vectors. By 
increasing the dimension, it is possible to detect 
“false neighbors” within the vectors because once 
the attractors unfold; the vectors near in this 
dimension move a significant distance apart in the 
next state.  This would indicate that the attractor of 
the system has not been accurately identified. 
Then the dimension is increased by one. 

The algorithm is that for each point X (i, m) in 
the time series looks for its nearest neighbor 
X (j, m) in an m-dimensional space. Calculate first 
the distance ‖X (i, m) – X (j, m)  ‖. Then,  iterate 
both points and compute the ratio R (i, m). 

)m,j(X)m,i(X

)1m,j(X)1m,i(X
)m,i(R

−

+−+
=   (4) 

If R (i, m) exceeds a given heuristic threshold, 
say R (t), this point is marked as having a false 
nearest neighbor. The criterion that the embedding 
dimension is high enough that the fraction of points 
for which R (i, m)>R (t) is zero, or at least 
sufficiently small. In order to apply the method to 
the present time series a suitable value for the 
Theiler window has to be selected.  

We use TISEAN software [35] to calculate 
embedding dimension of our climate data. Setting 
the value of τ = 4, ratio factor = 10 and initially 
Theiler window = 0. Fig. 5 is the plot of the false 
neighbors against the embedding dimensions of 
the trend removed climate data. Figure 5 shows, a 
slow convergence towards FNN from m = 8 to 27, 
we should analysis for noise in the data. 

 
Figure 5. Percentage of false neighbors of trend removed 

climate data come to zero at m = 27. 

Investigation of chaos existence in the time series 3



The Nucleus 49, No. 1 (2012) 

2.6. Noise Reduction 
There is high probability for random noise in the 

data, which is responsible to spread the time 
series.  Therefore, it needs to be filtered. As a 
stochastic process, noisy data exhibits large 
number of degrees of freedom and therefore, it 
should show no tendency to unfold at any specific 
dimension. Thus we able to eliminate events that 
show high embedding dimension. Moving average 
and low-pass filter methods are commonly used for 
noise reduction. In the present study, however, we 
use a nonlinear locally projective noise reduction 
scheme specifically developed for chaotic data as 
proposed by [36].  

The hypotheses of nonlinear locally projective 
noise reduced algorithm are that the measured 
data is composed of the output of a low-
dimensional dynamical system and of random or 
high-dimensional noise. This means that in an 
arbitrarily high-dimensional embedding space the 
deterministic part of the data would lie on a low-
dimensional subspace, while the effect of the noise 
is to spread the data off this subspace. The idea of 
the projective nonlinear noise reduction scheme is 
to identify the subspace and to project the data 
onto it [35].  

Suppose the dynamical system forms a 
v-dimensional subspace V containing the 
trajectory. All embedding vectors X (i) would lie 
inside another subspace  in the embedding 
space. For each X (i) there exists a correction ∆X 
(i), with 

V~

)i(X∆  small, in such a way that X (i) =∆ X 

(i) and that ∆ X (i), are orthogonal onV . So, 
vectors have to be over embedded in m-
dimensional spaces with m > v. This idea is 
realized through the TISEAN Software [35]. 

V~∈ ~

Fig. 5 shows a possible value of m between 5 
and 12, taking τ = 4, m = 27 and minimum false 
neighbours = 10 with v = 3 in safe for locally 
projective noise reduced data in the TISEAN 
software; we obtain a locally projective noise 
reduced data. Hence, we calculate the time delay 
and embedding dimension again from the locally 
projective noise reduced data. AMI plot in Fig. 6 
shows time delay τ = 2. With new time delay, we 
calculate new embedding dimension by false 
neighbors method of locally projective noise 
reduced  data  with Theiler  window = 10 and  τ = 2. 

Fig. 7 shows a considerable changing in 
embedding dimension and the new value of 
embedding dimension is 8. 

 
Figure 6. Average mutual information’s graph of locally 

projective noise reduced data shows τ=2.  

 
Figure 7. Embedding dimension of locally projective noise 

reduced data from false neighbors method. 
Embedding dimension = 8 for τ = 2. 

2.7. Phase Space Trajectories 
If a time series contains chaotic properties, the 

state vector X (t) will be attracted to a particular 
region in the phase space known as the strange 
attractor [14, 37]. The attractor may, however, be 
completely concealed if the time series contain 
noise.  

Figures 8 (a,b) and 9 show respectively 2 and 3-
dimensional phase space trajectories of trend 
removed summer monsoon’s data for τ = 4. In 
Fig.8 (a, b) and Fig. 9 show 3-dimensional phase 
space trajectories of noise reduced data for τ = 2. 
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Figure 8. Phase space plots (a) 2-dimension (b) 3-dimension 
of trend removed precipitation data with τ = 4. 
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Figure 9. Phase space trajectories of noise removed 

precipitation data with τ = 2. 

2.8. Recurrence Plots 
Recurrence is a fundamental property of 

dissipative dynamical systems. Although small 
disturbance of such system cause exponentially 
divergence of its state, after some time the system 
will come back to a state that is arbitrary close to a 
former state and pass through a similar evolution 
[38]. Recurrence plot is a 2-dimensional N x N 
pattern of points where N is the number of 
embedding vectors X (t) obtained from the delay 
coordinates of the input signal. A point (i, j) in this 
plot is set of  

))j(X)i(Xr(j,i −−Θ=R ,  i , j = 1, 2,…, N,     (5) 

where r is a predefined threshold and Θ is the 
Heaviside step function. The norm is arbitrary, 
although we use the maximum norm. Recurrence 
plots give information about the temporal 
correlation of phase space points. From the 
occurrence of lines parallel to the diagonal in the 
recurrence plot it can be seen how fast 
neighboured trajectories diverge in phase space 
and also show periodicity. However, these lines 
might not be so clear and it could contain subtle 
patterns which can not be visualized easily, in that 
case [39] propose recurrence quantification 
analysis (RQA) to quantify recurrence behaviour. In 
this paper we employ only recurrence plot analysis. 

Recurrence plots help revealing phase 
transitions and instationarities [40].  Visible 
rectangular block structures with a higher density of 
points in the recurrence plot indicate phase 
transition within the signal. If the texture of the 
pattern within such a block is homogeneous, 
stationarity can be assumed for the given signal 
within the corresponding period of time, i.e. the 
points should cover the plane uniformly on 
average, whereas nonstationarity expresses itself 
by an overall tendency of the dots to be close to the 
diagonal. The contrast of the resulting images can 
be selected by the distance r and the percentage of 
points that should be actually evident by a black 
region far away from the diagonal. The recurrence 
plot in the gray scale of the trend removed summer 
monsoon precipitation time series of Lahore is 
obtained and displayed in Fig. 10, which provides 
evidence of the stationary state in the data. 

Investigation of chaos existence in the time series 5
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Figure 10. Recurrence plot of trend removed climate data with 

m = 27 and τ = 4. 

The texture of the plot consists of small 
rectangular blocks, which shows some states are 
not being changed or change slowly for some time. 
It also shows varying degree of brightness inside 
the blocks suggesting that the data may be 
nonstationary, noisy and changes abruptly. The 
weak short diagonal lines parallel to the long 
regular diagonal line indicate chaotic behaviour. 
The plot in Fig.11 has more clear texture but some 
properties are remains constant, such as laminar 
state, stationarity and chaotic states as describe 
above. 

 
Figure 11. Recurrence plot of noise reduced climate data with 

τ = 2 and m = 8. 

3. Chaotic Analysis of Precipitation Data 
The most striking feature of chaos is the 

unpredictability of the future despite a deterministic 
time evolution. The average error make when 

forecasting the outcome of a future measurement 
increases very rapidly with time. This 
unpredictability is a consequence of the inherent 
instability of the solutions, reflected by what is 
called sensitive dependence on initial conditions. 

A more careful investigation of this instability 
leads to two different, although related, concepts. 
One aspect, which we do not want to elaborate in 
this paper, is the loss of information related to 
unpredictability. This is quantified by the 
Kolmogorov-Sinai entropy [7]. The other aspect is a 
simple geometric one, namely, that nearby 
trajectories separate very fast, or more precisely, 
exponentially fast over time. We analyse the 
precipitation data from the second approach. 

3.1. Kantz’s Algorithm for Lyapunov Exponent 
Exponential divergence of nearby orbits in 

phase space identifies chaotic behavior [41]. The 
properly averaged exponent of this increase is 
characteristic for the system underlying the data 
and quantifies the strength of chaos. It is called the 
Lyapunov exponent [30]. 

Lyapunov exponents measure the rate of 
divergence of initially close trajectories. A positive 
but finite Lyapunov exponent is, therefore, a sharp 
criterion for the existence of deterministic chaos. 
[42] as well as [43] introduced locally linear fits to 
the dynamics in order to follow the evolution in 
tangent space . The algorithm by [6] follows several 
nearby trajectories to measure the average 
increase of local phase space volume.  

Similar algorithms for this purpose have been 
proposed independently by [22, 44]. We follow the 
Kantz’s algorithm to investigate chaos in this paper. 
His algorithm works as, if we take two points in the 
phase space initially X0 (i) and X0 (j) and indicate 
their distance as 

│ X0 (i)  – X0 (j) │= δ0      (6) 

Then after time t it is expected that the new 
distance δt between same two points will be  

δt = δ0 eλt      (7) 

δt = δ0  , if λ = 0, that is the case of a cyclical series 
or a steady state. 

δt < δ0  when λ < 0, that is the case of convergent 
series towards a steady. 

6                                                                                                                                                                         M.S. Khan and M.J. Iqbal 
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Fig. 12. Estimation of largest Lyapunov exponent by Kantz’s algorithm for trend removed data (noisy data) and (b) 
noise reduced data. 

δt > δ0  when λ > 0, that is the case of divergent 
series. 

Where λ is called the Lyapunov exponent. Kantz 
calculated an unbiased stretching factor S(r,m,t) for 
maximal Lyapunov exponent, 
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around point X (i+t).
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For a low-dimensional deterministic process the 
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nu

xhibits a linear increase with 
identical slope for all m larger than some m  and 
for

mber, for a linear process it should be zero and 
for a stochastic process it should be infinite. In 
general, for a Lyapunov exponent describes an 
m-dimensional phase space the rate of expansion 
or contraction of orbits for each direction, resulting 
in m different Lyapunov exponents of whom some 
are zero or negative. However, the main interest is 
focused on the largest of these exponents since it 
can be calculated relatively easy and it yields 
evidence for the presence of deterministic chaos in 
the observed data. 

If S (r, m, t) e
0

 a reasonable range of initial neighborhood size 
r, then this slope can be taken as an estimate of 
the maximal exponent λ. The smaller r, the large 
the linear range of S, if there is one. Obviously, 
noise and the finite number of data points limit r 
from below. It is not always necessary to extend 
the average in Eq. (8) over the whole available 
data; reasonable averages can be obtained already 
with a few hundred reference points.   If some of 
the reference points have very few neighbors, the 
corresponding inner sum in Eq. (8) is dominated by 
fluctuations. Therefore, one may choose to exclude 
those reference points, which have less than, say, 
ten neighbors. However, discretion has to be 
applied with this parameter since it may introduce a 
bias against sparsely populated regions. This could 
in theory affect the estimated exponents due to 
multifractality. Like other quantities, Lyapunov 
exponent may be affected by serial correlations 
between reference points and neighbors. 
Therefore, a minimum time for ∆t = tt ′−  is 
considered.  

Now we calculate the Lyapunov exponents for 
both noisy data and noise-removed data. Using 
Thieler window tt ′− = 10 and other embedding 
values such as τ = 4, m = 20 to 27, minimum 
length scale to s h neighbours, r = 0.005 and 
maximum length scale to search neighbours, R = 
0.05 for noisy data. We also calculate maximal 
Lyapunov exponents, setting τ = 2, m = 3 to 8, 
minimum length scale to search neighbours, r = 
0.005 and maximum length scale to search 
neighbours, R = 0.05 for noise reduced data using 
TISEAN software. Results are summarized in 
Table 1. The Lyapunov exponents for both data are 
0.0425 and 0.0103 respectively. Local Lyapunov 
exponent for both data are very small and positive. 
This indicates that the time series of summer 

monsoon rainfall can exhibit chaotic behaviour 
after long time. 

Table 1.   Largest Ly
noise reduced data.

earc

apunov exponents for trend removed and 
 

Time 
Delay 

Embedding 
Dim. 

Max. Lyapunov 
Exp. 

 

Trend Rem ved Data o 4 26 0.0425 

Noise Reduced Data 2 8 0.0103 
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