
The Nucleus 49, No. 2 (2012) 129-137
The Nucleus The Nucleus

Paki stan

A Quarterly Scientific Journal of Pakistan
Atomic Energy Commission

N C L E AM , I S S N 0 0 2 9 - 5 6 9 8

TRANSPARENT COMPRESSION SCHEME FOR LINUX FILE SYSTEM

M. A. BASIR and *M. H. YOUSAF

Department of Computer Engineering, University of Engineering and Technology Taxila, Pakistan

(Received March 21, 2012 and accepted in revised form June 07, 2012)

Data footprint in data centers is growing day by day. Servers being used in research institutions, commercial web
hosting companies and other enterprise server environment are now dealing with more and more bytes. Most of these
servers have Linux operating systems and Ext2/3 comes as default file system in latest Linux kernel. A high-end
compression system could be introduced in Ext2/3. It will be helpful in reducing data footprint in Linux based server
environment. With slight modifications and using the sparse block feature of Ext2/3 file system transparent
compression could be achieved. The reduced data footprint will result in reduced power consumption due to lesser disk
reads and writes, and of course less data traffic on NAS(Network Attached Storage) and SAN(Storage Area Network).
The reduced hardware might result in less management cost and of course less space for hardware.

Keywords: Linux File System, Ext2/3 Compression Support, Kernel Transparent Compression, Reduction of Storage
Hardware Cost.

1. Introduction
Organization whether from IT or other sector

are facing common challenge of managing an ever
increasing amount of data and storage. With
growth of softwares and hardware technology more
and large files are being stored on servers for long
period of time to meet compliance and other
requirements, hence resulting in data footprint
growth.

Microsoft’s NTFS (File System), IBM's ZFS,
Reser4 File System and JFS supports the
transparent compression [1, 2]. The Windows NT
Technology and Later operating Systems (like
Server 2003, Server 2008, Vista and Windows 7)
provide the user transparent compression and
Encryption. Data Centers and other well known
Linux kernel based operating systems like
FreeBSD, Fedora and Ubuntu uses Linux File
System Ext2/3 as default file system for formatting
volumes [3, 4, 5]. Data Centers uses NAS devices,
NAS device has the operating system which is
diminished version of the whole operating system.
FreeNAS or Open source NAS [6] is being used as
operating system on NAS, DAS devices. Makatos
et. al. proposed transparent compression to
improve storage space efficiency and SSD-based
I/O caches[7, 8].

There are some block compression techniques
which are being used by ZFS and NTFS file
systems. Microsoft's NTFS compression engine
uses a modified form of LZ77 or LZ1 which is
named as LZNT1. It uses a constant buffer size of
64K to compress the data transparently. This
(small buffer size) causes more fragmentation in
file system and makes it a bad choice to be used
on server where storage IO is at high rate. On the
other hand IBM's ZFS manages the problem of
fragmentation with varying block size for
compression. Unlike NTFS it uses different size of
block for compressing data in different files and
directories.

NTFS is not the common choice as file system
in NAS servers. As stated NAS Server uses Free
BSD operating System, it has EXT as the default
file system to hold the data. So Linux LVM and its
Software RAIDs are more common in Data
Centers Systems and being used as default file
system in Linux Operating Systems. So the major
area of this research project focuses on EXT2/3 file
system EXT 2/3 has no officially announced kernel
support which provides the File System transparent
compression. At the time of writing of this paper
EXT has compression as a feature-under-test. 3rd
party tools are available like e3Compr [9] which
could be used as patch.

∗ Corresponding author : haroon.yousaf@uettaxila.edu.pk

Transparent compression scheme for linux file system 129

mailto:haroon.yousaf@uettaxila.edu.pk

The Nucleus 49, No. 2 (2012)

Here is the Linux kernel storage subsystem, the
area of interest for this research is Logical File
System subsystem.

Figure 1. Linux Kernel Storage Subsystem.

Underlying sub-headings explains EXT system
on some introductory level. Understanding of EXT
data structure and its data addressing techniques
are required to lay down architecture of new
compression system

1.1 EXT Evolution
Ext2 file system was designed and release α in

1993 as Linux Kernel part. Authors of this file
system are Remy Card and Stephen Tweedie. The
design of file system is flexible enough to
incorporate new changes. Ext3 the newer version
of Ext2 was released with journaling support. Ext4
is the latest version of the file system with some
further improvements.

Main architecture and data structures of Ext3are
quite similar to Ext2 except that of journaling
support (and of course some other features). The
modification in Ext File System proposed here is
equally applicable to Ext3 and Ext2 [3].

1.2. Structure of EXT
Linux EXT is rather simple file system, it tries to

keep the disk reads minimum for a file (minimizes
fragmentation). The basic read write unit on EXT is
block. Block is grouping of disk sectors. The size of
the sector depends upon the underlying storage
hardware . In most of the storage devices it is of
512 bytes. So the block size in Linux is 1KiB, 2KiB,
4KiB and 8KiB. Most of the Linux Operating
System implementations limits the block size to
4KiB.

Whole of the EXT partition is divided into group
of blocks name Block Group. Block Groups are of
same size except the last block. The block
distribution on the disk is shown in Figure2.

Boot
Block

Block
Group 0

Block
Group 1 Block

Group N-1

Figure 2. Disk layout of EXT partition

Boot Block stores different parameters of EXT file
system, without boot block the file system could not
be mounted by Kernel. File system keeps multiple
copies of boot block in Block Groups. These copies
of Boot Block are accessed only if the primary copy
of the Boot Block found corrupted or damaged.
Copies of Boot Blocks could be found in Block
Group 0, 1, 3, 5, 7 and 9. Boot Block is also named
as Super Block in Linux file system context [10].

Block Group consist of couple of data structures.
Figure 3 shows the detail about these data
structures.

Figure 3. Block Group [10].

Super Block as described holds primary
information about file system. The primary Super
block is present at byte offset 1024 in EXT
partition. The copy of Block group is present at byte
offset zero of that block. The Block group which
has no copy of super block fills zeros in that place.

130 M.A. Basir and M.H. Yousaf

The Nucleus 49, No. 2 (2012)

Group Descriptors Holds the information about
count of free inodes, count of free blocks, count of
directories in current group, block address of inode
bitmap, block address of block bitmap and block
address of Inode Table. EXT keeps multiple copies
of this data structure for reliability.

Data block Bitmap every single bit in this buffer
specifies the usage of block, if bit is set to 0 then
block is free, if bit is set to 1 then block is under
use of file system. EXT tries to fit data block bitmap
in one block. This rule could be used to calculate
the size of Block group in bytes. The equation
below can be used to calculate Block group size

BlockGroupSize = (BlockSize * 8) * BlockSize....(1)

For instance if BlockSize = 1K (1024 bytes) the
BlockGroupSize would be 8388608 bytes or 8MiB.
File system tries to keep the size equals to one
block size.

Inode Bitmap is assigned integer array just like
Data block bitmap, it can address the BlockSize * 8
number of inodes. If bit is set then inode is under
use.

Inode Table is an array of Inode data structure. The
start of Inode table is pointed by Group Descriptor
data structure. Every information related to the file
or directory is stored in inodes. It stores size of
files, different time stamps like create date,
modified date, accessed date and deletion date. It
holds the information about the chain or list of the
file blocks. Primary focus of this research to
perform detailed analysis of this portion of EXT file
system. Detailed structure of inode could be seen
in kernel documentation.

1.3. Data Addressing Mechanism

EXT uses four different modes of addressing
blocks of the file. Pointers of the first 12 blocks of
file are stored directly into the inode. Next three
block pointers are used for indirect, double indirect
and triple indirect addressing. These different
mode of addressing are shown in the Figure 4.
(taken from Linux Kernel documentation).

2. Background On File System Compression
Reiser4, NTFS, ZFS and JFS integrates

compression mechanism in their architecture. Their
compression mechanism is studied and analyzed
to modify Ext2/3 for compression support. This

section briefly highlights the mechanism of
compression used by these file systems.

Figure 4. Block pointer addressing.

2.1. NTFS (New Technology File System)

2.1.1 Structure and Operations
To understand how the compression in NTFS

works it is necessary to have a glance on the disk
layout of NTFS. The file system uses Little endian
format to save the information on disk. In NTFS
everything is file. Unlike FAT even the file system
meta data is placed in files. NTFS could be
partition in following logical blocks.

Figure 5. NTFS disk structure layed down on disk.

The bootblock defines different parameters for
file system. Like the sector size in form of bytes per
sector. It defines cluster size of the file system
which specifies the count of the sector in per
cluster. Cluster size is logically equivalent to block
size in Linux file systems. Cluster size could be
calculated as

ClusterSize = BytesInSector * SectorsInCluster (2)

ClsuterSize is always calculated in bytes. Please
refer to equation (2) above [11]. Boot block also
specifies the start of the meta data files, NTFS
maintains the backup of meta data files, the
starting position of backup of meta data is also
specified by the boot block. Boot block also
contains the boot code which is being used by boot
able partition to load the operating system.

Transparent compression scheme for linux file system 131

The Nucleus 49, No. 2 (2012)

Meta data in NTFS is saved in MFT records,
MFT is the main record like inode in Linux file
systems which hold every information about the
file, like it can save hard links, file data block
information to retrieve data about files, flags which
shows different attribute associated with the file
record. It can hold the data stamp information like
date last modified, date last accessed and date
created. It also hold the information about the file
size.

Directories are saved in special blocks called
Index blocks. NTFS uses B* trees for efficient
sorting and retrieval of files for large directories.

Files block chain is maintained in data runs in
MFT, Ext2/3 maintain this list in inode and uses
direct, indirect, double indirect or triple indirect
modes. Data runs is the special feature of NTFS
file system to retrieve the file blocks information
with minimal disk reads. This adds performance
edge to NTFS.

2.1.2. Compression in NTFS
Main point of interest for NTFS analysis lies in

understanding how it's compression works.
Mentioned earlier that Microsoft has implemented a
variant of LZ77 or LZ1 and named it LZNT1[11].

Cluster size here is important, NTFS uses
cluster size of 4KiB for compression. NTFS groups
further cluster to perform compression. The default
and recommended size for compression is 16
clusters. So the total size of buffer which will be
addressed during compression becomes. Please
have look at equation (3) [12] below.

compression_block= 4KiB * cluster_group_size (3)

Where clsuter_group_size is 16 by default and
recommended by Microsoft. compression_block
here becomes 64KiB. The compression engine
performs compression on this buffer and if new
size after compression is less than 56KiB or 60KiB
the compression on file is performed. Data runs in
NTFS are updated after compression accordingly.
How LZNT1 performs compression on buffer is out
of the scope of this paper [3].

NTFS inserts the sparse run after the normal
run (which contains the pointer for compressed
data blocks). This pair of run for compressed file
points to 16 Clusters. If the buffer of 64KiB is

compressed to 48KiB, then first run will point to 12
compressed blocks of file and the sparse run will
point to 4 virtual blocks of file, these 4 blocks would
not be there on disk physically.

3. Advantages and Disadvantages
NTFS compression is good for files smaller than

40MiB, NTFS compression is not recommended
for files which are accessed frequently. Due to
64KiB cluster the fragmentation in files increases
significantly which reduces the performance of file
system. NTFS compression does not work well on
already compressed files like gz, zip, mp3 or other
compressed files. NTFS is not recommended to be
used on server class family operating systems like
Windows 2003 and Windows 2008.

NTFS compression is good for PC based
partitions where data is placed and backed up by
user for archival purposes. It works good for small
files and uncompressed files like wav, dat or text
format files.

Due to cluster level or file block level
compression the space inside one block is wasted
and not claimed by file system. Like if a buffer of
4KiB is compressed to 3KiB the remaining 1KiB
space in this black will be wasted. There is no
mechanism in file system to reclaim this space.

3.1. ZFS (Zebra File Systems)
ZFS is the second file system selected to be

analyzed and studied for its transparent
compression technique. ZFS is one of the unique
file system which integrates the concept of Logical
Volume Manager and File System both.

3.2. Structure and Operations
According to the official document released by

Sun Microsystems, Inc. ZFS consist of seven
distinct subsystems. SPA (Storage Pool Allocator) ,
DSL (Dataset and Snapshot Layer), DMU (Data
Management Unit), ZIL (ZFS Intent Log), ZAP
(ZFS Attribute Processor) and ZVOL (ZFS
Volume)[13]. SPA is responsible for Virtual device
management in ZFS and is main point of interest
for this research. Dataset and Snapshot Layer
manages quotas, data integrity and reliability by
using Checksum SHA-2. ZVOL manages the
volume related work. In Linux this task is handled
by Logical Volume Manager [13].

132 M.A. Basir and M.H. Yousaf

The Nucleus 49, No. 2 (2012)

SPA manages virtual devices being used in
ZFS and also take care of Block pointer and
Indirect block pointer management. ZFS has two
type of virtual devices (vdev), Logical and Physical
Virtual Devices. Logical virtual devices are logical
entities used to group up Physical virtual devices in
device tree. ZFS attaches Vdev Labels with every
virtual device and attach Labels to every device
which is called Vdev Labels. ZFS ensures t-o
replicate the Vdev labels which is 256KiB structure.
This replication ensures that if one group of Vdev
labels is overwritten then it can be recovered from
other multiple copies[13].

Figure 6. ZFS device tree [13].

After Vdev Labels from start of the file system
there is 3.5 MiB reserved structure called Boot
Block. Sun has reserved it for future user. There
are two copies of Vdev Label at the end of the file
system and two are placed at start.

Block Pointers in ZFS are responsible for
handing over the file data to the requesting
application. Block pointer is 128 byte structure. The
table below specifies the detailed information about
Block pointer structure.

4. Compression
Vdev1, Vdev2 and Vdev3 in above tables point

to three different copies of data which are identical.
Vdev is 32 it integer and offset is 63 bit integer
value. It specifies the offset from start of the file
system to the location where data lives. This is how
ZFS implements its mirroring or data redundancy
mechanism.

ZFS is unique in compression in a sense that it
supports multiple algorithms for compression and

specified by the comp flag in Block Pointer. It is of
8 bit, The table below shows value which could be
used by this field.

Figure 7. Block Pointer Structure [13].

Table 2. Compr byte values.

Algorithm Value Description

Lzjb 1 Compression On

None 2 Compression Off

Lzjb 3 Lzjb Algorithm

Size fields in Block Pointer structure has
different significant meanings. LSIZE shows the
size of the current block without compression,
PSIZE shows the compressed size of the block.
ASIZE is the size including all the metadata pay
loads like gang headers or raid-Z parity.

LZJB is the lossless compression algorithm
which is being used by ZFS. It is dictionary based
algorithm and uses sliding window technique to
analyze the whole buffer for compression.
Discussion on compression algorithm is out of the
scope of the research.

5. Advantages and Disadvantages
ZFS has over head of Volume management as

this file system focuses on data integrity and uses

Transparent compression scheme for linux file system 133

The Nucleus 49, No. 2 (2012)

data mirroring or replication. This file system
implements a good compression algorithm which is
efficient in terms of CPU cycles consumption and
compression. ZFS is not good for files under
frequent use, like NTFS it is not good in
compressing already compressed file formats like
avi or mp3 formats.

ZFS is good for server class operating system
and good in compressing file greater than 50 MiB
to some files of TiB.

6. Proposed Architecture
After having some basic understanding of EXT,

study and analysis of on-disk structure and
compression for NTFS and ZFS this section will
propose a new architecture for Ext2/3. The major
objective and goal of this research is to perform
least modification in the File system to achieve
compression. This section will briefly describe the
structure of Ext2/3 and then highlight the approach
which will be used to add transparent compression.
Some good design approaches will be adapted
from the above described file systems. Figure 8
shows the sub system red where kernel could be
modified.

6.1. Proposed Compression System
Inode structure has flag fields which define

different attributes associated to the file. Some of
the flag values are experimental and currently not
supported by Linux kernel. These flags are
compression flag, deletion and un-deletion.
Compression flag here is used to specify that file is
compressed or not. When compression on the fly
is performed this flag in inode of every directory
and file is set. When blocks for such file are
accessed the special decompression mechanism
is invoked which decompresses the file data and
passes it to requesting application, this keeps the
compression and decompression mechanism
transparent to requesting applications.

The proposed architecture introduces the
concept of compression window. Multiple blocks of
file are collected to form a compression window.
Compression window size is selected to be of
128KiB. For example, the file of 1MiB could have 8
compression windows of 128KiB. Compression
window size is selected to be constant for all files in
Ext2/3 partition.

Unlike ZFS which selects different size for
compression window for different files or
directories. NTFS selects the constant size for
compression window for every file in the partition.
Figure 9 highlights the concept of compression
window introduced in this research.

Figure 8. The Big Picture

Figure 9. Compression window .

6.2. Working of Compression System
Main challenge is to keep the unique

identification for every block of file even in
compression window. A unique approach is
devised to address the issue. Figure10 details the

134 M.A. Basir and M.H. Yousaf

The Nucleus 49, No. 2 (2012)

example of compression with block size of 8KiB
and file size of 479KiB, the compression window
size selected for this test case is 128KiB.

Figure 10. Compression example.

A file block N is compressed and its size after
compression is calculated. Two bytes are reserved
in front of every compressed file block which stores
the compressed size of the current block. Next
block is compressed, its size is calculated, padded
in front of compressed buffer and then inserted
after the N-1th block. This mechanism goes on till
all of the blocks in compression buffer are
compressed. Two bytes allows to keep the track of
blocks with maximum size of 65536 bytes which is
64KiB. The maximum allowed block size in Ext2/3
is 8KiB. Figure 11 elaborates the phenomena of
accessing the compressed block in compression
window.

After performing compression some blocks at
the end of compression window are now available.
The relevant inode pointing to this block is set
0x00000000. Number of free inodes count in group
descriptor of current Block group is update. This
will let Kernel to use inodes and blocks which are
available after compression. This step in Ext2/3
compression is necessary so that new block which
are available after compression could be
consumed by new files.

Sometimes lossless compression algorithm
LZJB is unable to compress the whole
compression buffer and its size grows even larger
from uncompressed buffer. If the size of whole
compression buffer grows from the compression
window size then contents of that particular

compression window are not updated on the disk
and no inodes block reservation are updated.

Figure 11. Accessing the unique file block after compression

has been done on the file data.

For files smaller than 128KiB are assumed to
have compression window equal to the size of file.

7. Experimentation Results
Compression for lossless algorithm is totally

dependent on the nature of data. Compressed file
formats like avi, gz or zip do not give good
compression results.

Units being used for measuring compression
system are bit by byte ration (bit by byte),
compression percentage and Kilobytes per second
[14]. First two units are used for measuring the
compression power of the system. The later one is
used for performance measuring of compression
system. Optimizing the performance of this system
is the future work for this research. The main focus
is to design and propose a basic compression
system for Ext2/3.

Results of proposed system are controlled by
following factors.

• Compression window size

• File block size

• Nature of data (compressed or uncompressed)

Transparent compression scheme for linux file system 135

The Nucleus 49, No. 2 (2012)

• Fragmentation of File

Effect of compression window size and file
block size were analyzed. Nature of data selected
for this test run was uncompressed. A fresh EXT
partition was created and data files were placed on
the partition to execute the compression test.
Following chart elaborates some detailed
information about the findings of test run.

Figure 12 shows the effect of block sizes on
compression. Bit by byte ratio is count of bit which
could be used to represent on byte [14]. Bit by Byte
ratio for a file of size 800bytes compressed to 100
bytes will be 100/800 * 8 = 1bpb.

Figure 12. Block size affecting compression ratio measure in
bits per byte.

Figure13 shows the effect of block size on
compression in another representation name as
compression percentage.

Figure13. Compression percentage plotted against block size.

Another interesting analysis of the compression
system is to study bpb ratio for different window
sizes. The detailed test run was executed to grab
this information shown in Figure14.

Figure 14. Compression ratio for different block sizes plotted
against different window size selected for
compression.

Compression percentage for different window
sizes and different block sizes was analyzed.
Experimentation results for this configuration are
shown in Figure15.

Figure 15. Compression percentage for different block sizes
plotted against different window sizes.

8. Conclusion
The main objective of this research is to

propose some new changes in Linux kernel and
Ext2/3 to compression support, while keeping
changes as minimal as possible. Well defined
commercial and research projects exist for this
purpose. But Ext2/3 has its own advantages and
usability.

136 M.A. Basir and M.H. Yousaf

The Nucleus 49, No. 2 (2012)

According to experimental results found,
compression window size of 128 KiB with block
size of 4KiB is highly recommended. Compression
window with 512 produces high compression but
on the cost of CPU usage. Ideally 50 CUP cycles
are consumed for every byte to be compressed. As
for NTFS and ZFS it is recommended not to
compress those files which are in frequent use.

ZFS uses dynamic compression window for
every file. Calculating that window size is also an
over head on CPU. The propose architecture
suggest to keep it to constant to 128 KiB. ZFS has
other heads of volume management, quota
management and data structures overhead. Ext2/3
has simpler data structures as compared to ZFS
and of course causes less impact in terms of CPU
usage.

NTFS implements LZ77 which is less efficient
as compared to LZJB. Comparison of compression
algorithm and their optimization is out of the scope
of this research.

Performance optimization of proposed
architecture is one of the future task. As this project
mainly focuses on investigating existing systems
and proposing some new structure for Ext2/3 to
achieve compression. Adding compression support
to encrypted file is also one of the task required to
be implemented in future.

This research adapts one of the compression
algorithm from ZFS. Designing the new
compression algorithm for Ext2/3 is also required.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14] NTFS On Disk Structure and Compression,
Rel-Soft Technology (Oct., 2004).

File System Comparison, WikiPedia,
http://en.wikipedia.org/wiki/Comparison_of_fil
e_systems (Feb. 27, 2012).

TOMOYO, “Linux Kernel Implementation by
TOMOYO which focuses mainly on security
”http://tomoyo.sourceforge.jp/

JNODE, “Java New Operating System
Design Effort”, http://www.jnode.org/ (May 14,
2012).

Sources For Linux Kernel, “Linux Kernel
Source Code”, http://www.kernel.org/pub/
linux/ (May 3, 2012).

Free NAS implementation, “Free NAS”,
online at http://freenas.org/FreeNAS/ (May
15, 2011).

T. Makatos, Y. Klonatos, M. Marazakis, M. D.
Flouris, and A. Bilas, “ZBD: Using
Transparent Compression at the Block Level
to Increase Storage Space Efficiency”
International Workshop on Storage Network
Architecture and Parallel I/O(SNAPI) (2010).

T. Makatos, Y. Klonatos, M. Marazakis, M. D.
Flouris, and A. Bilas, “Using Transparent
Compression to Improve SSD-based I/O
Caches.” to appear in the ACM/SIGOPS
European Conference on Computer Systems
(EuroSys 2010).

e2Compr, “EXT Third party compression
system”, http://e2compr.sourceforge.net/
(April 3, 2011).

Gregorio Narváez SANS Institute InfoSec
Reading Room, “EXT3 Journaling File
System Forensic Analysis” (December 30,
2007).

Red Hat Linux 9: Red Hat Linux System
Administration Primer Copyright © 2003 by
Red Hat, Inc. (Feb 20, 2008).

By Greg Schulz, “Application Agnostic Real-
time Data Compression How Real-time
compression across different applications
reduces data footprint and energy efficiency
without performance compromises,” (Feb.
11, 2008).

4150 Network Circle, Sun Microsystems, Inc.
“ZFS On-Disk Specification” (Jan. 1, 2006)

Arturo San Emeterio Campos, The
introduction to Data Compression,
http://www.arturocampos.com/cp_ch1.html#
Measuring%20the%20compression%20rate,
(July 6, 2000).

Transparent compression scheme for linux file system 137

http://en.wikipedia.org/wiki/Comparison_of_file_systems
http://en.wikipedia.org/wiki/Comparison_of_file_systems
http://www.jnode.org/
http://www.kernel.org/pub/ linux/
http://www.kernel.org/pub/ linux/
http://freenas.org/FreeNAS/
http://e2compr.sourceforge.net/

