
The Nucleus 50, No. 3 (2013) 229-240

Mining top-k frequent closed itemsets in data streams 229

Paki stan

The Nucleus

The Nucleus
A Quarterly Scientific Journal of Pakistan

Atomic Energy Commission

N C L E A M , I S S N 0 0 2 9 - 5 6 9 8

MINING TOP-K FREQUENT CLOSED ITEMSETS IN DATA STREAMS USING

SLIDING WINDOW

*Z. REHMAN and M. SHAHBAZ

Department of Computer Science and Engineering, University of Engineering and Technology, Lahore, Pakistan

 (Received May 06, 2013 and accepted in revised form September 02, 2013)

Frequent itemset mining has become a popular research area in data mining community since the last few years. There
are two main technical hitches while finding frequent itemsets. First, to provide an appropriate minimum support value to
start and user need to tune this minimum support value by running the algorithm again and again. Secondly, generated
frequent itemsets are mostly numerous and as a result a number of association rules generated are also very large in
numbers. Applications dealing with streaming environment need to process the data received at high rate, therefore,
finding frequent itemsets in data streams becomes complex. In this paper, we present an algorithm to mine top-k
frequent closed itemsets using sliding window approach from streaming data. We developed a single-pass algorithm to
find frequent closed itemsets of length between user‟s defined minimum and maximum-length. To improve the
performance of algorithm and to avoid rescanning of data, we have transformed data into bitmap based tree data
structure.

Keyword: Data stream mining, Closed frequent itemsets, Approximate mining, Sliding window

1. Introduction

An unbounded sequence of transactions
arriving at high speed is called data stream for
examples data streams are generated while
network monitoring and analysis, network intrusion
detection, web click stream mining, financial
applications, telecommunication call records, retail
store transactions and many more. Data mining
community is focusing to process such dynamic
and continuously changing data. There are some
inherent problems being faced by researchers
while dealing with data streams. Firstly, memory is
limited and we are unable to store all incoming
data due to continuity and high data rate.
Secondly, applications need to look at data only
once and it is not feasible to scan data multiple
times to detect patterns because of the limited
speed and possible limited processing power.
Thirdly, mining of incoming data streams should be
performed at very fast rate i.e. before the arrival of
new transaction. Fourthly, mining results and
analytical outputs should be available within a
small time frame after the data is being recorded
and received for analysis. Finally, error rate of
stream processing should be reduced to minimum
possible level. Due to these inherent
characteristics or problems, traditional data mining
algorithms are not suitable to be applied directly on
streaming data [1]. There is a need to modify and
extend traditional algorithms to deal with data

streams. Therefore, researchers from databases
and data mining communities have focused on the
issues and are continuously trying to improve data
analysis strategies in streaming environment.
Researcher have to face the challenge to optimize
the accuracy and efficiency therefore algorithms
developed for streaming data normally perform
more efficiently while sacrificing some accuracy
and producing some approximate results [2].

 Frequent itemsets mining on streaming
data is being explored extensively by the
researchers recently [3-8]. Association rule is one
of the data mining techniques commonly used to
extract hidden correlation among the data [9].
These rules are normally generated from the
frequent itemsets and reflect hidden information
and relation in the data. Association rules can be
defined as, if there is a set of transactions and
each transaction T contains some items I then
association is presented as under:

A set containing items from I is called itemset
so A and B are itemsets in the above association
rule. These rules reflect that if some relation exists
or is being observed then there is always a chance
that same incident will occur again. For example
94% times an event A is detected, a virus attack B
occurs in the system. In traditional association rule
mining two inherent problems exist. Firstly, tuning

 Corresponding author :xahoor@gmail.com

The Nucleus 50, No. 3 (2013)

230 Z. Rahman & M. Shahbaz

of minimum support value is a difficult task
because we don‟t want to miss any low occurring
important rules and/or itemsets and having a cap
on the total number of generated rules. Setting and
tuning minimum threshold value in real
environment is a difficult task and need a lot of
experience and expertise. Furthermore, in cases
when someone is only interested to find 30 most
frequent itemsets will be constrained to tune min-
supp value. Therefore, it is needed to bypass this
constraint of minimum support adjustment both in
traditional and data streaming environments.
Secondly, a lot of rules are being generated due to
increased number of frequent itemsets [10-11]. In
order to reduce number of frequent itemsets,
“closure property” is considered that amazingly
decreases number of frequent itemsets without
losing important information. The idea of frequent
closed itemsets was introduced by Pasquier et
al.[12].Closed itemset also cover its subsets with
the same support and there is no need to keep
those subsets that have support equal or less than
their superset support. In a case where a frequent
itemset is like then frequent

subitemsets will be equal to . Closed itemset

mining only generate one itemset if
all of its sub itemsets support is less than or equal
to its support. Thus closed itemset mining reduces
number of frequent itemsets resulting less number
of association rule generation and improving better
resource utilization in computing environment. It is
also beneficial for real environment implementation
and reduces complexity of the problem.

Most of the algorithms developed to mine
closed frequent itemsets use min-supp threshold
[3, 13, and 14].Wang et al. [10] proposed a
technique to find top-k closed frequent itemsets
without using min-supp constraint. In their
approach, itemsets of minimum length l were
extracted and only top-k become frequent closed
itemsets using FP-tree pruning and traversing
technique. Traditional data mining or specifically
frequent itemset mining using apriori algorithm
scans data multiple times to discover associations.
In streaming data environment the problem of
mining frequent itemset becomes more complex
because data streams are continuously arriving at
a high pace. Due to unavailability of data for
multiple scans because of the time and processing
speed constraints it is needed to develop one-pass
algorithm to extract useful information from data
streams. Also because of continuous and rapid
data arrival current frequent itemsets might
become infrequent or infrequent itemsets become

frequent in the next or any subsequent time slot.
Keeping all data streams in memory is practically
impossible because of its huge volume and its
limited usage in future. Therefore, frequent itemset
mining in data streams need novel algorithms to
overcome these problems and constraints.

To find frequent itemsets in continuous and
high volume streaming data, many efforts have
been made [3,8,14-19]. As it is almost impossible
to keep all data streams in memory therefore only
current data from some time-interval can be used.
To use most current data, window based models
have been proposed [20-27]. There are three
different time-window models used for mining
frequent itemsets namely landmark model, tilted-
time window model and sliding window model [28].
Landmark model consider data from some specific
landmark (time) to the current time and perform
mining tasks only on this block of data. Tilted-time
window model also known as damped model is a
variation of landmark model. This model considers
data from start of stream to the current time but
assign some weights on the bases of their arrival
time. Current or most recent data is assigned a
larger weight value and this weight goes on
decreasing while moving towards older data. In
contrast to landmark and time-tilted model, sliding
window based model considers the most recent
fixed-sized block of data. Size of window in sliding
window model can be determined on the bases of
fixed number of transactions (transaction-sensitive)
or from some time marker to current time (time-
sensitive). Sliding window model utilize data
available in the current window for mining
purposes. When a window expires, a new window
of transactions takes place of expired window to
provide current most data for mining.

Researchers from data mining community are
inspired from the performance and compactness of
FP-tree as it scans the data for only two times to
extract frequent itemsets present in the data. There
are many variations of FP-tree algorithm for
streaming data which scans the data for only once
to discover the frequent itemsets [22,26,29-32].
Most of these algorithms find approximate results
and compactness of FP-tree is also lost. Tanbeer
et al [26] made an effort to develop an algorithm to
find exact results in the current window without
approximation and also developed a strategy to
achieve compactness with one scan of
transactional data. A data structure Compact
Pattern Stream tree (CPS-tree) was developed to
efficiently insert newly arriving data into the CPS-
tree and similarly deleting the old data from the

The Nucleus 50, No. 3 (2013)

Mining top-k frequent closed itemsets in data streams 231

CPS-tree. Due to this data structure, overall
performance for finding frequent itemsets in data
streams improves with exactness. Two basic
problems i.e. tuning of min-supp and large number
of frequent itemset generation are still there to
address in this algorithm. To overcome min-supp
overhead and to fix number of frequent itemsets
generation, top-k technique has been proposed
[4, 10, 33].

The rest of paper is organized as follows. In
section 2, problem of top-k frequent itemset mining
in data streams is explained. The same section
also covers the proposed techniques and
algorithms developed to find solution of top-k
frequent itemsets mining in streaming data.
Algorithm for mining top-k closed frequent itemsets
and other concepts for data streams are presented
in section 3. Section 4 explains the proposed
algorithm and methodology with a scenario
example to visualize the performance and
execution of algorithm. Section 5 describes
experimentation and results. The last section will
cover the conclusions and future work related to
this research.

2. Related Work and Preliminaries

In this portion of the paper, we will describe and
explain key terms, problem definitions and
previous contribution in this area in a more formal
way.

2.1 Related Work

In cases when we are not interested to find all
frequent itemsets, it is to find all the frequent
itemsets and also it required extra efforts to find
minimum threshold value which requires some
level of expertise and multiple runs of algorithm on
the same data to tune this threshold. To overcome
these bottlenecks, the concept of Top-k frequent
itemsets emerged. In Top-k, we find only k
itemsets having maximum support value thus
avoiding defining minimum support value. Fu et
al.[34] developed an algorithm to mine top-k
frequent itemsets without defining the support
threshold value for the first time. Cheung and Fu et
al.[4]developed an algorithm called Build-Once and
Mine-Once (BOMO), based on FP-tree that mines
the K most interesting itemsets. This algorithm
dynamically updates the threshold value to find K
most interesting itemsets. All these algorithms
need multiple scans of database to find top-k
frequent itemsets while in the streaming
environment it is not optimal to scan database
again and again. In order to handle the streaming

data mining we need to develop single-pass
algorithms to find frequent itemsets.

Leung et al.[22] proposed a method based on
FP-Tree and developed a tree structure DSTree.
This algorithm uses sliding window approach to
find frequent itemsets and each batch of
transactions in the current window is maintained in
a prefix tree. Each node of the tree represents an
item and sorted in a canonical order. After expiry of
a batch (pane), one of the oldest batches is
removed from the tree to create space for the
newly arriving batch. Li et al.[35] developed an
algorithm called MFI-TransSW based on Apriori
algorithm that mines frequent itemsets in the
current window. They used bit strings to represent
a transaction and to represent the presence of an
item in the transaction is shown by „1‟ while its
absence is represented by „0‟. Left shift operation
is performed on the bit string to remove oldest
transaction to create space for the newly arriving
transaction. As MFI-TransSW is based on Apriori,
therefore it generates candidate itemsets and
performs testing to mine frequent itemsets and in
turn creating problems like scalability and
performance in the streaming environment.
Tanbeer et al.[26] designed an algorithm that is
based on prefix tree called CPS-Tree. This
algorithm works like DSTree [22] algorithm but
there is an extra functionality of dynamic
reconstruction of tree. Reconstruction of tree
improves memory utilization and performance of
mining frequent itemsets. The prefix tree is
monitored continuously and when there are
enough changes in the items order in the tree then
reconstruction process begins. Lin et al. [36]
proposed a method to divide window of transaction
into batches (or panes) to find frequent itemsets
over the sliding window. Similarly Mozafari et al.
[25] developed a method in which sliding window is
incorporated and each window is divided into
different panes to mine frequent itemsets locally in
each pane and then considered for advance
analysis in the entire window. Mahmood Deypir et
al.[37] proposed a list based method LDS that
uses vertical layout of sliding window to mine
frequent items in data streams. Three lists are
used to continuously monitor the newly arriving
stream of transactions and adjusted accordingly to
keep current state of frequent itemsets in the active
window. This leads to an efficient mining process
because current states of lists are incorporating
recent window layout and requires less conversion
time.

The Nucleus 50, No. 3 (2013)

232 Z. Rahman & M. Shahbaz

Some efforts have been made to find special
type of frequent itemsets in the data streams. Chi
et al. [38] proposed an algorithm Moment to find
closed frequent itemsets. Similarly Cheng et al.
[39] developed IncMine algorithm to find
approximate frequent closed itemsets in a sliding
window fashion. Li et al. [40] proposed an
algorithm called estMax to find non-derivable
frequent itemsets in the data streams. Concept drift
based frequent pattern mining in streaming data is
proposed by Koh et al. [41]. This algorithm keeps
on checking transaction streams to detect any
concept shift and once any concept shift is found, it
will start frequent itemsets mining process. Wang
et al.[10]proposed an algorithm TFP that finds top-
k frequent closed itemsets not less than user
defined min-l size based on FP-tree. Firstly, this
algorithm is for static databases and not suitable
for streaming environment where data is
continuously changing and secondly, in
applications where transaction size is large enough
this algorithm will be finding frequent itemsets of
available maximum size e.g. if itemsets of size 100
is available and min-l value is supposed to be 4
then it will be finding all frequent itemsets more
than or equal to size 4. This will be really limiting
the performance in the streaming databases.
Therefore, a new approach to find top-k closed
frequent itemsets over sliding window is proposed.
This algorithm finds top-k closed frequent itemsets
of sizes between some minimum and maximum
length without defining minimum support threshold.
Our algorithm is based on prefix tree structure and
a dynamic approach is defined to increase support
value to find top-k frequent itemsets.

2.2 Preliminaries

Let I = {i1, i2, . . . , in} be a set of items in some
time interval. Suppose that X is a non-empty
itemset of literals/items from I. l is the length of

itemset X reflecting its size in terms of items ijℇI.

A transaction is represented by a tuple <tid, X>,
where tid is the identifier of transaction and X is
itemset. A transaction is represented as T = {tid,
(i1, i2, . . . , ij)}.

TDB is a database of transactions. An itemset X
is a part of a transaction T = {tid, (i1, i2, . . , ij)} iff X

⊆(i1, i2, . . , ij). A continuous and unbounded
sequence of these transactions is called
transaction database as give below:

TDB = {T1, T2 , …… , Tk}

Where T1 is the first and Tk is the most recent
transaction in the transaction database.

Definition 1. Data stream is a collection of
transaction arriving continuously TDB = {T1, T2 ,
…… , Tk} and SWDB = {W1, W2 , …… , Wk} is a set
of windows. W1 is the first window while Wk is the
most recent windows. Each transaction sensitive
sliding window SW = { P1 , P2 } is a window that
consists of two panes P1 and P2 and each pane is
represented as shown below:

This window will slide after the arrival of each
new pane P that consists of next three (3)
transactions. To create room for newly receiving
pane P, first pane P1 will be removed and P2 will be
shifted to the position P1 so that new pane can be
inserted into the P2 position. Although the sliding of
window is after each pane but actually the size of
window is the sum of both panes i.e. P1 and P2.

Sup(X)wi represents support of an itemset X in
the window W i i.e. current window. Sup(X)wi is the
count of transactions containing X in the current
window W i.

Definition 2. If Sup(X)wi is above or equal to
some predefined threshold value then itemset X is
called frequent itemset (FI) .

Definition 3. An itemset X is called closed
itemset if there is no proper subset Y of X that has
support equal to support of X i.e. if Y⊆X and
support of Y is less than that of X then itemset Y
will not be in FI. Similarly top-k closed itemset
between some minimum length min-l and
maximum length max-l finds only k closed itemsets
in the range of min-l and max-l.

Mining top-k frequent itemsets is relatively a
new idea and has not been extensively used for
stream mining because of its complexity and
requirement for real environment. Hua-Fu li et al.
[27] and Wong et al. [42] used top-k frequent
itemsets mining in data streams. To minimize
number of frequent itemsets, minimum length
technique proposed by Wang et al. [10] and
maximum length of itemset technique was
developed by Tsai et al. [11]. While finding
frequent itemsets with length above some min-
length, some important information might lose.
Similarly in the cases where max-length for
frequent itemsets is defined and set to some large
value then large number of frequent itemsets will

The Nucleus 50, No. 3 (2013)

Mining top-k frequent closed itemsets in data streams 233

Table 1. Transaction database TDB.

TID Items Sorted-Items

1 a, b, d, e, f, g, j b, d, a, f, j, e, g

b, d, a, c, f, h, i

b, d, f, i, j, e, g

a, c, h, i, e

b, d, a, c, h, j

b, d, c, f, h, i, j, g

2 a, b, c, d, f, h, i

3 b, d, e, f, g, i, j

4 a, c, e, h, i

5 a, b, c, d, h, j

6 b, c, d, f, g, h, I, j

7 a, b, c, d, e, f, g

8 b, d, e, g, i, j

9 b, c, d, f, i, j

be generated. To overcome this problem of large
number of frequent itemsets generation, lower and
upper marker technique is used to manage number
of frequent itemsets generation for those
applications where only itemsets between some
minimum and maximum sizes are required. Our
focus in this research is to develop a tree structure
to mine top-k frequent itemsets from streaming
data and to develop a strategy to perform correct
insertion and deletion of transactional data in an
efficient way. There is no specific research to solve
the addressed issues for data streams without
minimum support threshold.

We have a transactional database TDB, sliding
window database SWDB where each window
consist of two panes i.e. SW = { P1 , P2 } and K is
some integer representing the number of frequent
itemsets required to be mined. Required task of
this algorithm is to find top-k closed frequent
itemsets of size more than min-l and less than
max-l from the TDB over the sliding window SW in
an efficient manner.

Table 1 shows transaction ID, transaction items
and sorted transactions on the bases of support
count for window W1. Let us consider that we are
supposed to find top-3 frequent closed itemsets
between some min-l = 2 and max-l = 4. To sort
each transaction, frequency count of each item is
counted in the entire transaction database TDB and
then order of items in each transaction is
rearranged in frequency descending order as
shown in the third column of Table 1. Closed
frequent itemsets between min-l = 2 and max-l = 4
in first window W1 of this transaction database TDB

are: bd = 5, bda = 3, bdac = 2

As stated in the previous section that different
efforts have been made to find frequent itemsets in
both static and streaming data, it is quite clear that
FP-growth based algorithms are more efficient but

problem is how to fit that algorithm to find top-k
frequent closed itemsets in the streaming
environment.

3. Development of Mining Strategy

In this section, we introduce a complete method
to develop an efficient algorithm to find top-k
closed frequent itemsets in the streaming data
using the sliding window approach. The
methodology consists of three major phases i.e.
scanning of initial transaction database,
initialization of panes in the window and then
sorting transactions in frequency descending
orders in terms of items. Once the transactions are
sorted in frequency descending order, an efficient
structure development based on FP-tree to store
necessary information about the transactions
called FPS-tree with sliding window approach that
deals with the removal of the oldest pane of
transactions and insertion of the newly arriving
batch of transactions. Finally the top-k closed
frequent itemsets mining phase starts that
dynamically adjust support to find top-k frequent
itemsets between some min-l and max-l.

3.1 Bit-vector Representation

Once the initial batch of transaction is received,
a bit-vector is generated for each item in the
transaction to process these transactions in an
efficient manner both at current and next phases of
the algorithm. Once the initialization of window is
complete, next phase of FPS-tree data structure
generation is started. Details of tree-based
structure are in the next section. Finally, the sliding
window phase is executed to delete the oldest
pane of transactions from the generated tree upon
the arrival of new batch of transactions and then
insertions of new batch took place.

W1

The Nucleus 50, No. 3 (2013)

234 Z. Rahman & M. Shahbaz

Table 2. Bit-vector representation and sorted order of transactions.

Item Bit-vectors Support Sorted Sorted-window

a 110,110 4 b b, d, a, f, j, e, g

b, d, a, c, f, h, i

b, d, f, i, j, e, g

a, c, h, i, e

b, d, a, c, h, j

b, d, c, f, h, i, j, g

b 111,011 5 d

c 010,111 4 a

d 111,011 5 c

e 101,100 3 f

f 111,001 4 h

g 101,001 3 i

h 010,111 4 j

i 011,101 4 e

j 101,011 4 g

Li et al.[13] used bit-vector to represent items in
the transactional data streams and stored all
necessary information in the sliding window. This
representation helps to reduce memory utilization
and improves efficiency to process items in the
sliding window environment. The process of bit-
vector representation is described by example as
follows.

In each pane of a window, presence of some
specific item x is represented by 1 while absence is
represented by 0. For example, transaction
database shown in Table 1, bit-vectors for item a
and b in both panes i.e. P1 and P2 (in the entire
window W1) are BV(a) = 110,110 and BV(b) =
111,011 respectively. It is clear from the
transaction database that item „a‟ is present in T1,
T2, T4, T5, while it is absent in the transactions T3

and T6. Therefore presence is represented by 1
and absence by 0 in the current window W1 and
similarly the item b is present in transactions T1, T2,
T3, T5, T6 and absent in only one transaction T4.
Bit-vector representation of transactions in Table 1
is shown in Table 2.

Once we have converted transactions into bit-
vector representation, it becomes fairly easy to sort
transactions in frequency descending order. Before
inserting transactions into FP-tree based structure,
sorting of transactions in frequency descending
order really helps to improve the process of finding
top-k frequent itemsets.

FP-growth algorithm need to scan database
twice to build a compact tree in frequency
descending order as discussed by Han et al.[43].
During the first scan, it counts the frequency of
each item in the database and produces a list of
items in frequency descending order. In the
second scan of database it generates a FP-tree
that contains of frequent itemsets in a compact

way so that frequent itemsets generation can be
achieved in an efficient manner. In streaming data
environment, it is difficult to process transactions in
an efficient way so that resources can be made
available for the continuously arriving transactions.
Therefore, it is needed to design algorithms that
need only one scan of transactions to extract
frequent itemsets. In this approach, we transform
incoming transactions into a bit-vector to count
frequency of each item and then generate
transactions in frequency descending order as
shown in column sorted-window of Table 2. On the
bases of sorted-window column, transactions are
inserted into the FP-tree structure for the first
window of transactions. Each window is further
decomposed into 2 panes i.e. P1 and P2 and when
a new batch (pane) of transaction is received,
window will be sliding to update its current
database. There is information for each transaction
of each pane in the FP-tree therefore it is easier to
update items information when a window expires
and slides forward i.e. older pane will be simply
removed from the FP-tree to create space for the
upcoming pane and each item pane information in
the FP-tree is updated

3.2 FPS-tree Construction

The construction of FPS-tree to find top-k
closed frequent itemsets between min-l and max-l
consists of two phases. In first phase it inserts
sorted transactions into the tree structure. Second
phase starts after the expiry of the first window.
When window expires, items of the oldest pane are
removed from the FPS-tree and if the remaining
branches are in frequency descending order
according to the new sorted window then it will
keep those branches (unchanged) otherwise those
branches are adjusted according to the new sort
order of transactions.

The Nucleus 50, No. 3 (2013)

Mining top-k frequent closed itemsets in data streams 235

Construction of FPS-tree is explained with the
help of data shown in Table 2. Let us consider that
each window W consists of 2 panes i.e. P1 and P2
and each pane contains 3 transactions therefore,
there are 6 transactions in each window W. On the
bases of support column, items in the transactions
are sorted as shown in sorted-item column of
Table 2 and then sorted transactions are
generated. Each sorted transaction is inserted into
the FPS-tree as a branch and if any of the already
existing branches contains prefix of new
transaction then relevant bit is set to 1 for all
shared items in the prefix path and the remaining
suffix of the new transaction is inserted by initiating
a sub-branch. Relevant bits in all other branches
are set to 0 as shown in the Figure 1.

Initially the construction of FPS-tree starts while
the entire window W1 is received i.e. both P1 and
P2 panes have been received. After the
preprocessing of received transactions,
transactions in the sorted-window column are
inserted into the FPS-tree. Figure 2 shows the
structure of FPS-tree after the insertion of both P1
and P2 panes i.e. window W1.

Figure 1. FPS-tree after insertion of pane P1.

Each node in the tree contains information that
in which transaction it is present and which
transaction it is missing or absent e.g. a:110,010
reveals that a is found in transaction T1, T2, T5 and
not found in transactions T3, T4,and T6 with prefix
of bd as shown in Figure 2. First three bits
represent pane P1 and last three bits represent
pane P2.

Algorithm: Construction Process of FPS-tree

Input:Streaming_data, Size_window SW,
Size_pane P, Sorted_windowW

Output: Sorted_tree FPS-tree for current set of
transaction

Begin

1. T is a tree with null initialization;
2. W ← Ø is the window status at start;
3. Sort_order ← Frequency_descending;
 // Processing first window
4. While (w ≠ SW) do
5. Call insert_transactions (Tp);
6. W = W + 1;
7. End While;
 // Processing transactions at each window
 slide
8. Repeat
9. Remove the pane P1 from the tree T;
 // Removal of oldest pane to create space
10. Call insert_transactions (Tp);//Insert process
11. End;
End

// Pane insertion method
Insert_transactions (Trans)
Begin
1. P ← Ø
2. While (p ≠ pane_size) do
3. Retrieve the transactions from the current
 window turn by turn;
4. Insert the retrieved transactions into tree T;
5. P = P + 1;
6. End While
End

3.3 Deletion of Items and Restructuring of FPS-
tree

On the expiry of window W, first pane P1that
contains transactions T1, T2 and T3 will be removed
from the FPS-tree to create space for the newly
arriving pane of transactions i.e. T7, T8 and T9. To
start the deletion phase, left-most leaf-node is
processed first e.g. g in our case as shown in
Figure 2. The bit-victor values of leaf-nodes for
pane P1 are checked and set to 0 if it is/are already
set to 1 and then the same bits in the entire prefix
path are also set to 0. The nodes in the pane P1,
where all the bits are set to 0, are removed and at
the same time shift pane P2 to the position of pane
P1 to create space for the next incoming pane. In
the cases where after the removal of pane P1, if all
the bits for the pane P2 are already set to 0 then all
those nodes are also removed from the FPS-tree

The Nucleus 50, No. 3 (2013)

236 Z. Rahman & M. Shahbaz

Figure 2. FPS-tree after insertion of both panes P1 and P2 (Complete window W1).

Figure 3. Branches marked for removal after expiry of window W1.

e.g. in the path b, d, a, f, j, e, g, all bits of pane P2
in the nodes g, e, j and f are already 0 therefore,
after the removal of pane P1, these nodes are
removed from the FPS-tree as shown in Figure 2.
Figure 3 shows the braches that have all bits set to

zero after the expiry of pane P1 and are removed
from the FPS-tree. After the removal of pane P1,
new FPS-tree structure is shown in Figure 4a and
it can accept new incoming pane to store.

The Nucleus 50, No. 3 (2013)

Mining top-k frequent closed itemsets in data streams 237

Table 3. Bit-vector representation and new sorted order of transactions after window slide.

Item Bit-vectors

after removal
Bit-vectors
after insertion

Support Sorted item Sorted-window

a 110 110,100 3 b c, i, a, e, h

b, c, d, j, a, h

b, c, d, i, j, f, g, h

b, c, d, a, e, f, g

b, d, i, j, e, g

b, c, d, i, j, f

b 011 011,111 5 c

c 111 111,101 5 d

d 011 011,111 5 i

e 100 100,110 3 j

f 001 001,101 3 a

g 001 001,110 3 e

h 111 111,000 3 f

i 101 101,011 4 g

j 011 011,011 4 h

Figure. 4a. FPS-tree after the removal of pane P1.

Table 3 shows the bit-vectors for each item
after the removal of pane P1 and similarly the bit-
vectors after the receiving of new pane P2. Support
count for each item is updated after the pane P2 is
processed and new sort order of items is
generated as depicted in the Table 3. According to
the new sort order of items, sorted-window of
transactions is generated in frequency descending
order. Once all these values have been generated,
all branches in the FPS-tree are checked to verify
whether those are in frequency descending order

or not on the bases of new sort order of items. In
case, a branch is already according to the new
sorted list is remained unchanged otherwise
reordering of that branch is initiated to update the
FPS-tree. For example the branch b, d, a, c, h, j is
not according the new sort order of items therefore
it is removed from the FPS-tree and reinserted as
per new frequency descending order i.e. b, c, d, j,
a, h, as shown in Figure 4b. The updated FPS-tree
according to the new sort order is shown in
Figure 4b.

The Nucleus 50, No. 3 (2013)

238 Z. Rahman & M. Shahbaz

Figure. 4b. FPS-tree after removal of P1 and in new sort order

Figure 5. Tree after insertion of new pane and slide of
window.

After the completion of restructuring phase of
FPS-tree, the insertion phase begins for newly
arrived pane P2. During the insertion process,
existing FPS-tree is checked for prefix path for
each transaction and if there is any path then it is
shared and relevant bits are set to 1 to increase
frequency count of those nodes and the remaining
suffix path is added as a sub-branch and similarly
relevant bits are set to 1 as well. For example while
processing the first transaction (b, c, d, a, e, f, g) of
pane P2, the prefix path b, c, d is already there in
the FPS-tree therefore it is shared and relevant bits
of b, c and d are set to 1 and the remaining suffix
i.e. a, e, f and g is added as a sub-branch and

relevant bits are also set to 1 as shown in the
Figure 5.

3.4 Finding Top-k Closed Frequent Itemsets

To find top-k closed frequent itemsets, it is most
important to explain closed frequent itemsets and
closed-node. Closed itemset is already defined
and explained in section 2.2, therefore, here we
need to introduce closed-node only. A node in the
FPS-tree is called a closed-node if there is no child
with the same support e.g. if X is a parent-node
with support of 4 and Y is the child of X with
support count of 3 then X is called closed-node but
if support of Y is also 4 then X will not be a closed-
node.

As the efficiency and performance of any
algorithm is directly dependent on the facts that
how efficient are the sub-processes of that
algorithm therefore to get better performance and
efficiency, we developed a strategy to find closed-
nodes at early stages. Once we achieve the
sorted-window as shown in both Table 2 and
Table 3, insertion phase of transactions in FPS-
tree is started. Closed-node finding process is
integrated with this insertion phase as follows.
When first transaction from the sorted-window is
inserted into the FPS-tree, the leaf-node is marked
as closed-node. An entry of frequency count with
itemset is created, as shown in the Table 4, if leaf
node is greater in length from min-l and less than
max-l. Similarly, while inserting the next transaction
into the FPS-tree, it is checked that whether there
is any prefix path that can be shared. If some prefix
path is already in the FPS-tree for new transaction,
that is being inserted then corresponding bits of
shared prefix path are set to 1 and remaining suffix
is added as sub-branch of existing one. The node
at which sub-branch is created is also marked as
closed-node along with the leaf-node (closed-
node) and entry in the Table 4 is created if this
closed node is between min-l and max-l. To
visualize the process of finding closed-node,
Figure 3 depicts that all closed-nodes are
represented by double circles. Table 4 represents
the closed-itemsets while Table 5 represents same
closed-itemsets in the sorted form using merge
sort.

We are interested to find top-k itemsets,
therefore itemset with maximum support count is
found from the closed nodes first. Once the closed
itemset with maximum support is calculated, we
decrease the count of k by one and next itemset is
searched accordingly. This process continues until
the value of k becomes zero. This process of

The Nucleus 50, No. 3 (2013)

Mining top-k frequent closed itemsets in data streams 239

finding top-k reduces number of comparisons and
overall efficiency is improved.

Table 4. Closed node count between min-l and max-l.

Support count Closed-itemsets

5 b, d

3 b, d, a

1 b, d, a, f, j

2 b, d, a, c

1 b, d, a, c, f

1 b, d, a, c, f

1 b, d, c, f, h

1 a, c, h, I, e

Table 5. Frequency descending closed node count in between
min-l and max-l.

Support count (Sorted) Closed-itemsets

5 b, d

3 b, d, a

2 b, d, a, c

1 b, d, a, f, j

1 b, d, a, c, f

1 b, d, a, c, f

1 b, d, c, f, h

1 a, c, h, I, e

4. Conclusion

In this paper we have proposed an algorithm to
find closed frequent itemsets in sliding window
environment for data streams. To improve
processing and mining processes, a FP-tree based
compact tree structure FPS-tree is devised using a
bit vector representation of the items and sorted
items lists are maintained. A dynamic approach to
increase support in finding top-k closed frequent
itemsets is also presented. Finding frequent
itemsets of some specified lengths is achieved by
defining min-length and max-length parameters to
restrict size of itemsets to be mined. This limiting
factor really improved the performance of the FPS-
tree in the cases where users are interested in
those itemsets that are between the length ranges.
We have performed different experiments to verify
the performance of FPS-tree and compared it with
recently proposed efficient algorithms like LDS,
FCI-Max and TOPSIL-Miner. Results reflect that
FPS-tree outperformed all the three algorithms on
different datasets.

References

[1] B. Li, “Fining Frequent Itemsets from
Uncertain Transaction Streams (2009) pp.
331–335.

[2] B. Yang and H. Huang, Knowledge and
Information Systems 23, No. 2, (May 2009)
p. 225

[3] J. H. Chang and W. S. Lee, Finding Recent
Frequent Itemsets Adaptively Over Online
Data Streams (2003) p. 487.

[4] Yin-Ling Cheung and Ada Wai-Chee Fu,
IEEE Transactions on Knowledge and Data
Engg. 16, No. 9, (Sept. 2004) p. 1052

[5] P. Songram and V. Boonjing, N-Most
Interesting Closed Itemset Mining (2008)
p. 619

[6] D. Lee and W. Lee, Finding Maximal
Frequent Itemsets over Online Data Streams
Adaptively (2005) pp. 266–273.

[7] A. Manjhi, V. Shkapenyuk, K. Dhamdhere,
and C. Olston, Finding (Recently) Frequent
Items in Distributed Data Streams (2004)
pp. 767–778.

[8] G. S. Manku and R. Motwani, Approximate
Frequency Counts Over Data Streams,
Proceedings of the 28th International
Conference on Very Large Data Bases,
(2002) pp. 346–357.

[9] R. Agrawal and R. Srikant, Fast Algorithms
for Mining Association Rules in Large
Databases, VLDB‟94, Proceedings of 20th
International Conference on Very Large Data
Bases, September 12-15, 1994, Santiago de
Chile, (1994) pp. 487–499.

[10] J. Wang, J. Han, Y. Lu and P. Tzvetkov,
IEEE Transactions on Knowledge and Data
Engg. 17, No. 5 (2005) 652.

[11] P. S. M. Tsai, Expert Systems with
Applications 37, No. 10 (2010) 6968.

[12] N. Pasquier, Y. Bastide, R. Taouil, and L.
Lakhal, Discovering Frequent Closed
Itemsets for Association Rules (1999) p. 398

[13] H.-F. Li, C.-C. Ho and S.-Y. Lee, Expert
Systems with Applications 36, No. 2 (2009)
pp. 2451

[14] F. Ao, J. Du, Y.n Yan, B. Liu and K. Huang,
An Efficient Algorithm for Mining Closed
Frequent Itemsets in Data Streams, IEEE 8

th

International Conference on CIT (2008)
p. 37.

The Nucleus 50, No. 3 (2013)

240 Z. Rahman & M. Shahbaz

[15] C. C. Aggarwal, Data Streams Models and
Algorithms. New York: Springer (2007).

[16] M. M. Gaber, A. Zaslavsky and
S. Krishnaswamy, ACM SIGMOD Record,
34, No. 2 (2005) 18.

[17] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong and
Y.-K. Lee, CP-Tree: A Tree Structure for
Single-Pass Frequent Pattern Mining,
Advances in Knowledge Discovery and Data
Mining 5012 (2008) 1022.

[18] T. Hu, S. Y. Sung, H. Xiong and Q. Fu,
Discovery of Maximum Length Frequent
Itemsets, Information Sciences 178, No. 1
(2008) 69.

[19] J. Han, H. Cheng, D. Xin and X. Yan, Data
Mining and Knowledge Discovery 15, No. 1
(2007) 55.

[20] Jia-dong Ren and Ke Li, Online Data Stream
Mining of Recent Frequent Itemsets Based
on Sliding Window Model (2008) pp. 293–
298.

[21] H.-F. Li, C.-C. Ho, M.-K. Shan and S.-Y. Lee,
Efficient Maintenance and Mining of Frequent
Itemsets over Online Data Streams with a
Sliding Window (2006) p. 2672.

[22] C. Leung and Q. Khan, DSTree: A Tree
Structure for the Mining of Frequent Sets
from Data Streams (2006) pp. 928.

[23] Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz,
Moment: Maintaining Closed Frequent
Itemsets over a Stream Sliding Window
(Nov 2004) p. 59.

[24] L. Jin, D. J. Chai, Y. K. Lee and K. H. Ryu,
Mining Frequent Itemsets over Data Streams
with Multiple Time-Sensitive Sliding Windows
(2007) p. 486.

[25] B. Mozafari, H. Thakkar and C. Zaniolo,
Verifying and Mining Frequent Patterns from
Large Windows over Data Streams (2008)
p. 179.

[26] S.K. Tanbeer, C. F. Ahmed, B.-S. Jeong and
Y.-K. Lee, Information Sciences 179, No. 22
(2009) 3843.

[27] H.-F. Li, Expert Systems with Applications
36, No. 7 (2009) 10779.

[28] C. Lin, D. Chiu, and Y. Wu, Mining Frequent
Itemsets from Data Streams with a Time-
Sensitive Sliding Window, SDM (2005).

[29] A.J.T. Lee and C.-S. Wang, Information
Sciences 177, No. 17 (2007) 3453.

[30] C. Leung and Q. Khan, Efficient Mining of
Constrained Frequent Patterns from Streams
(2006) 61.

[31] M. J. Zaki and C.-J. Hsiao, IEEE
Transactions on Knowledge and Data Engg.
17, No. 4 (2005) 462.

[32] J. Han, J. Wang, Y. Lu, and P. Tzvetkov,
Mining Top-K Frequent Closed Patterns
without Minimum Support, Proceedings of
IEEE International Conference on Data
Mining (2002) p. 211.

[33] A. Metwally, D. Agrawal, and A. Abbadi,
Efficient Computation of Frequent and Top-k
Elements in Data Streams, Database Theory,
3363, T. Eiter and L. Libkin, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg,
(2004) pp. 398

[34] A. W. Fu, R. W. Kwong, F. Renfrew, W.
Kwong, and J. Tang, Mining N-most
Interesting Itemsets (2000)

[35] H.-F. Li and S.-Y. Lee, Expert Systems with
Applications 36 No. 2, (2009) 1466.

[36] C. Lin, D. Chiu, and Y. Wu, Mining Frequent
Itemsets from Data Streams with a Time-
Sensitive Sliding Window, SDM (2005).

[37] M. Deypir and M. H. Sadreddini, Journal of
Systems and Software 85, No. 3 (2012) 746.

[38] Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz,
Knowledge and Information Systems, 10
No. 3 (2006) 265.

[39] J. Cheng, Y. Ke, and W. Ng, Journal of
Intelligent Information Systems 31, No. 3,
(2007) 191.

[40] H. Li and H. Chen, Data & Knowledge
Engineering 68, No. 5 (2009) 481.

[41] J.-L. Koh and C.-Y. Lin, Concept Shift
Detection for Frequent Itemsets from Sliding
Windows over Data Streams, Database
Systems for Advanced Applications, 5667,
L. Chen, C. Liu, Q. Liu, and K. Deng, Eds.
Berlin, Heidelberg: Springer Berlin
Heidelberg (2009) p. 334.

[42] R. C. Wong and A. W. Fu, Mining Top-
K Itemsets Over a Sliding window Based on
Zipfian Distribution, SIAM International
Conference on Data Mining (2005).

[43] J. Han, J. Pei, and Y. Yin, Mining Frequent
Patterns without Candidate Gneration (2000)
pp. 1–12.

