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Frequent itemset mining has become a popular research area in data mining community since the last few years. There 
are two main technical hitches while finding frequent itemsets. First, to provide an appropriate minimum support value to 
start and user need to tune this minimum support value by running the algorithm again and again. Secondly, generated 
frequent itemsets are mostly numerous and as a result a number of association rules generated are also very large in 
numbers. Applications dealing with streaming environment need to process the data received at high rate, therefore, 
finding frequent itemsets in data streams becomes complex. In this paper, we present an algorithm to mine top-k 
frequent closed itemsets using sliding window approach from streaming data. We developed a single-pass algorithm to 
find frequent closed itemsets of length between user‟s defined minimum and maximum-length. To improve the 
performance of algorithm and to avoid rescanning of data, we have transformed data into bitmap based tree data 
structure.  
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1.  Introduction 

An unbounded sequence of transactions 
arriving at high speed is called data stream for 
examples data streams are generated while 
network monitoring and analysis, network intrusion 
detection, web click stream mining, financial 
applications, telecommunication call records, retail 
store transactions and many more. Data mining 
community is focusing to process such dynamic 
and continuously changing data. There are some 
inherent problems being faced by researchers 
while dealing with data streams. Firstly, memory is 
limited and we are unable to store all incoming 
data due to continuity and high data rate. 
Secondly, applications need to look at data only 
once and it is not feasible to scan data multiple 
times to detect patterns because of the limited 
speed and possible limited processing power. 
Thirdly, mining of incoming data streams should be 
performed at very fast rate i.e. before the arrival of 
new transaction. Fourthly, mining results and 
analytical outputs should be available within a 
small time frame after the data is being recorded 
and received for analysis. Finally, error rate of 
stream processing should be reduced to minimum 
possible level. Due to these inherent 
characteristics or problems, traditional data mining 
algorithms are not suitable to be applied directly on 
streaming data [1]. There is a need to modify and 
extend traditional algorithms to deal with data 

streams. Therefore, researchers from databases 
and data mining communities have focused on the 
issues and are continuously trying to improve data 
analysis strategies in streaming environment. 
Researcher have to face the challenge to optimize 
the accuracy and efficiency therefore algorithms 
developed for streaming data normally perform 
more efficiently while sacrificing some accuracy 
and producing some approximate results [2]. 

 Frequent itemsets mining on streaming 
data is being explored extensively by the 
researchers recently [3-8]. Association rule is one 
of the data mining techniques commonly used to 
extract hidden correlation among the data [9]. 
These rules are normally generated from the 
frequent itemsets and reflect hidden information 
and relation in the data. Association rules can be 
defined as, if there is a set of transactions and 
each transaction T contains some items I then 
association is presented as under: 

 

A set containing items from I is called itemset 
so A and B are itemsets in the above association 
rule. These rules reflect that if some relation exists 
or is being observed then there is always a chance 
that same incident will occur again. For example 
94% times an event A is detected, a virus attack B 
occurs in the system. In traditional association rule 
mining two inherent problems exist. Firstly, tuning 
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of minimum support value is a difficult task 
because we don‟t want to miss any low occurring 
important rules and/or itemsets and having a cap 
on the total number of generated rules. Setting and 
tuning minimum threshold value in real 
environment is a difficult task and need a lot of 
experience and expertise. Furthermore, in cases 
when someone is only interested to find 30 most 
frequent itemsets will be constrained to tune min-
supp value. Therefore, it is needed to bypass this 
constraint of minimum support adjustment both in 
traditional and data streaming environments. 
Secondly, a lot of rules are being generated due to 
increased number of frequent itemsets [10-11]. In 
order to reduce number of frequent itemsets, 
“closure property” is considered that amazingly 
decreases number of frequent itemsets without 
losing important information. The idea of frequent 
closed itemsets was introduced by Pasquier et 
al.[12].Closed itemset also cover its subsets with 
the same support and there is no need to keep 
those subsets that have support equal or less than 
their superset support. In a case where a frequent 
itemset is like  then frequent 

subitemsets will be equal to . Closed itemset 

mining only generate one itemset  if 
all of its sub itemsets support is less than or equal 
to its support. Thus closed itemset mining reduces 
number of frequent itemsets resulting less number 
of association rule generation and improving better 
resource utilization in computing environment. It is 
also beneficial for real environment implementation 
and reduces complexity of the problem. 

Most of the algorithms developed to mine 
closed frequent itemsets use min-supp threshold 
[3, 13, and 14].Wang et al. [10] proposed a 
technique to find top-k closed frequent itemsets 
without using min-supp constraint. In their 
approach, itemsets of minimum length l were 
extracted and only top-k become frequent closed 
itemsets using FP-tree pruning and traversing 
technique. Traditional data mining or specifically 
frequent itemset mining using apriori algorithm 
scans data multiple times to discover associations. 
In streaming data environment the problem of 
mining frequent itemset becomes more complex 
because data streams are continuously arriving at 
a high pace. Due to unavailability of data for 
multiple scans because of the time and processing 
speed constraints it is needed to develop one-pass 
algorithm to extract useful information from data 
streams. Also because of continuous and rapid 
data arrival current frequent itemsets might 
become infrequent or infrequent itemsets become 

frequent in the next or any subsequent time slot. 
Keeping all data streams in memory is practically 
impossible because of its huge volume and its 
limited usage in future. Therefore, frequent itemset 
mining in data streams need novel algorithms to 
overcome these problems and constraints.  

To find frequent itemsets in continuous and 
high volume streaming data, many efforts have 
been made [3,8,14-19]. As it is almost impossible 
to keep all data streams in memory therefore only 
current data from some time-interval can be used. 
To use most current data, window based models 
have been proposed [20-27]. There are three 
different time-window models used for mining 
frequent itemsets namely landmark model, tilted-
time window model and sliding window model [28]. 
Landmark model consider data from some specific 
landmark (time) to the current time and perform 
mining tasks only on this block of data. Tilted-time 
window model also known as damped model is a 
variation of landmark model. This model considers 
data from start of stream to the current time but 
assign some weights on the bases of their arrival 
time. Current or most recent data is assigned a 
larger weight value and this weight goes on 
decreasing while moving towards older data. In 
contrast to landmark and time-tilted model, sliding 
window based model considers the most recent 
fixed-sized block of data. Size of window in sliding 
window model can be determined on the bases of 
fixed number of transactions (transaction-sensitive) 
or from some time marker to current time (time-
sensitive). Sliding window model utilize data 
available in the current window for mining 
purposes. When a window expires, a new window 
of transactions takes place of expired window to 
provide current most data for mining. 

Researchers from data mining community are 
inspired from the performance and compactness of 
FP-tree as it scans the data for only two times to 
extract frequent itemsets present in the data. There 
are many variations of FP-tree algorithm for 
streaming data which scans the data for only once 
to discover the frequent itemsets [22,26,29-32]. 
Most of these algorithms find approximate results 
and compactness of FP-tree is also lost. Tanbeer 
et al [26] made an effort to develop an algorithm to 
find exact results in the current window without 
approximation and also developed a strategy to 
achieve compactness with one scan of 
transactional data. A data structure Compact 
Pattern Stream tree (CPS-tree) was developed to 
efficiently insert newly arriving data into the CPS-
tree and similarly deleting the old data from the 
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CPS-tree. Due to this data structure, overall 
performance for finding frequent itemsets in data 
streams improves with exactness. Two basic 
problems i.e. tuning of min-supp and large number 
of frequent itemset generation are still there to 
address in this algorithm. To overcome min-supp 
overhead and to fix number of frequent itemsets 
generation, top-k technique has been proposed 
[4, 10, 33]. 

The rest of paper is organized as follows. In 
section 2, problem of top-k frequent itemset mining 
in data streams is explained. The same section 
also covers the proposed techniques and 
algorithms developed to find solution of top-k 
frequent itemsets mining in streaming data. 
Algorithm for mining top-k closed frequent itemsets 
and other concepts for data streams are presented 
in section 3. Section 4 explains the proposed 
algorithm and methodology with a scenario 
example to visualize the performance and 
execution of algorithm. Section 5 describes 
experimentation and results. The last section will 
cover the conclusions and future work related to 
this research. 

2.  Related Work and Preliminaries 

In this portion of the paper, we will describe and 
explain key terms, problem definitions and 
previous contribution in this area in a more formal 
way.  

2.1 Related Work 

In cases when we are not interested to find all 
frequent itemsets, it is to find all the frequent 
itemsets and also it required extra efforts to find 
minimum threshold value which requires some 
level of expertise and multiple runs of algorithm on 
the same data to tune this threshold. To overcome 
these bottlenecks, the concept of Top-k frequent 
itemsets emerged. In Top-k, we find only k 
itemsets having maximum support value thus 
avoiding defining minimum support value. Fu et 
al.[34] developed an algorithm to mine top-k 
frequent itemsets without defining the support 
threshold value for the first time. Cheung and Fu et 
al.[4]developed an algorithm called Build-Once and 
Mine-Once (BOMO), based on FP-tree that mines 
the K most interesting itemsets. This algorithm 
dynamically updates the threshold value to find K 
most interesting itemsets. All these algorithms 
need multiple scans of database to find top-k 
frequent itemsets while in the streaming 
environment it is not optimal to scan database 
again and again. In order to handle the streaming 

data mining we need to develop single-pass 
algorithms to find frequent itemsets. 

Leung et al.[22] proposed a method based on 
FP-Tree and developed a tree structure DSTree. 
This algorithm uses sliding window approach to 
find frequent itemsets and each batch of 
transactions in the current window is maintained in 
a prefix tree. Each node of the tree represents an 
item and sorted in a canonical order. After expiry of 
a batch (pane), one of the oldest batches is 
removed from the tree to create space for the 
newly arriving batch. Li et al.[35] developed an 
algorithm called MFI-TransSW based on Apriori 
algorithm that mines frequent itemsets in the 
current window. They used bit strings to represent 
a transaction and to represent the presence of an 
item in the transaction is shown by „1‟ while its 
absence is represented by „0‟. Left shift operation 
is performed on the bit string to remove oldest 
transaction to create space for the newly arriving 
transaction. As MFI-TransSW is based on Apriori, 
therefore it generates candidate itemsets and 
performs testing to mine frequent itemsets and in 
turn creating problems like scalability and 
performance in the streaming environment. 
Tanbeer et al.[26] designed an algorithm that is 
based on prefix tree called CPS-Tree. This 
algorithm works like DSTree [22] algorithm but 
there is an extra functionality of dynamic 
reconstruction of tree. Reconstruction of tree 
improves memory utilization and performance of 
mining frequent itemsets. The prefix tree is 
monitored continuously and when there are 
enough changes in the items order in the tree then 
reconstruction process begins. Lin et al. [36] 
proposed a method to divide window of transaction 
into batches (or panes) to find frequent itemsets 
over the sliding window. Similarly Mozafari et al. 
[25] developed a method in which sliding window is 
incorporated and each window is divided into 
different panes to mine frequent itemsets locally in 
each pane and then considered for advance 
analysis in the entire window. Mahmood Deypir et 
al.[37] proposed a list based method LDS that 
uses vertical layout of sliding window to mine 
frequent items in data streams. Three lists are 
used to continuously monitor the newly arriving 
stream of transactions and adjusted accordingly to 
keep current state of frequent itemsets in the active 
window. This leads to an efficient mining process 
because current states of lists are incorporating 
recent window layout and requires less conversion 
time. 



The Nucleus 50, No. 3 (2013) 

232                                                                                                                                                                         Z. Rahman & M. Shahbaz 

Some efforts have been made to find special 
type of frequent itemsets in the data streams. Chi 
et al. [38] proposed an algorithm Moment to find 
closed frequent itemsets. Similarly Cheng et al. 
[39] developed IncMine algorithm to find 
approximate frequent closed itemsets in a sliding 
window fashion. Li et al. [40] proposed an 
algorithm called estMax to find non-derivable 
frequent itemsets in the data streams. Concept drift 
based frequent pattern mining in streaming data is 
proposed by Koh et al. [41]. This algorithm keeps 
on checking transaction streams to detect any 
concept shift and once any concept shift is found, it 
will start frequent itemsets mining process. Wang 
et al.[10]proposed an algorithm TFP that finds top-
k frequent closed itemsets not less than user 
defined min-l size based on FP-tree. Firstly, this 
algorithm is for static databases and not suitable 
for streaming environment where data is 
continuously changing and secondly, in 
applications where transaction size is large enough 
this algorithm will be finding frequent itemsets of 
available maximum size e.g. if itemsets of size 100 
is available and min-l value is supposed to be 4 
then it will be finding all frequent itemsets more 
than or equal to size 4. This will be really limiting 
the performance in the streaming databases. 
Therefore, a new approach to find top-k closed 
frequent itemsets over sliding window is proposed. 
This algorithm finds top-k closed frequent itemsets 
of sizes between some minimum and maximum 
length without defining minimum support threshold. 
Our algorithm is based on prefix tree structure and 
a dynamic approach is defined to increase support 
value to find top-k frequent itemsets. 

2.2 Preliminaries 

Let I = {i1, i2, . . . , in} be a set of items in some 
time interval. Suppose that X is a non-empty 
itemset of literals/items from I. l is the length of 

itemset X reflecting its size in terms of items ijℇI. 

A transaction is represented by a tuple <tid, X>, 
where tid is the identifier of transaction and X is 
itemset. A transaction is represented as T = {tid, 
(i1, i2, . . . , ij)}.  

TDB is a database of transactions. An itemset X 
is a part of a transaction T = {tid, (i1, i2, . . , ij)} iff X 

⊆(i1, i2, . . , ij). A continuous and unbounded 
sequence of these transactions is called 
transaction database as give below: 

TDB = {T1, T2 , …… , Tk} 

Where T1 is the first and Tk is the most recent 
transaction in the transaction database. 

Definition 1. Data stream is a collection of 
transaction arriving continuously TDB = {T1, T2 , 
…… , Tk} and SWDB = {W1, W2 , …… , Wk} is a set 
of windows. W1 is the first window while Wk is the 
most recent windows. Each transaction sensitive 
sliding window SW = { P1 , P2 } is a window that 
consists of two panes P1 and P2 and each pane is 
represented as shown below: 

 

This window will slide after the arrival of each 
new pane P that consists of next three (3) 
transactions. To create room for newly receiving 
pane P, first pane P1 will be removed and P2 will be 
shifted to the position P1 so that new pane can be 
inserted into the P2 position. Although the sliding of 
window is after each pane but actually the size of 
window is the sum of both panes i.e. P1 and P2.  

 

Sup(X)wi represents support of an itemset X in 
the window W i i.e. current window. Sup(X)wi is the 
count of transactions containing X in the current 
window W i.   

Definition 2. If Sup(X)wi is above or equal to 
some predefined threshold value then itemset X is 
called frequent itemset (FI) . 

Definition 3. An itemset X is called closed 
itemset if there is no proper subset Y of X that has 
support equal to support of X i.e. if Y⊆X and 
support of Y is less than that of X then itemset Y 
will not be in FI. Similarly top-k closed itemset 
between some minimum length min-l and 
maximum length max-l finds only k closed itemsets 
in the range of min-l and max-l. 

Mining top-k frequent itemsets is relatively a 
new idea and has not been extensively used for 
stream mining because of its complexity and 
requirement for real environment. Hua-Fu li et al. 
[27] and Wong et al. [42] used top-k frequent 
itemsets mining in data streams. To minimize 
number of frequent itemsets, minimum length 
technique proposed by Wang et al. [10] and 
maximum length of itemset technique was 
developed by Tsai et al. [11]. While finding 
frequent itemsets with length above some min-
length, some important information might lose. 
Similarly in the cases where max-length for 
frequent itemsets is defined and set to some large 
value then large number of frequent itemsets will 
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Table 1.   Transaction database TDB. 

TID Items Sorted-Items 

1 a, b, d, e, f, g, j b, d, a, f, j, e, g 

b, d, a, c, f, h, i 

b, d, f, i, j, e, g 

a, c, h, i, e 

b, d, a, c, h, j 

b, d, c, f, h, i, j, g 

2 a, b, c, d, f, h, i 

3 b, d, e, f, g, i, j 

4 a, c, e, h, i 

5 a, b, c, d, h, j 

6 b, c, d, f, g, h, I, j 

7 a, b, c, d, e, f, g 

8 b, d, e, g, i, j 

9 b, c, d, f, i, j 

 

be generated. To overcome this problem of large 
number of frequent itemsets generation, lower and 
upper marker technique is used to manage number 
of frequent itemsets generation for those 
applications where only itemsets between some 
minimum and maximum sizes are required. Our 
focus in this research is to develop a tree structure 
to mine top-k frequent itemsets from streaming 
data and to develop a strategy to perform correct 
insertion and deletion of transactional data in an 
efficient way. There is no specific research to solve 
the addressed issues for data streams without 
minimum support threshold. 

We have a transactional database TDB, sliding 
window database SWDB where each window 
consist of two panes i.e. SW = { P1 , P2 } and K is 
some integer representing the number of frequent 
itemsets required to be mined. Required task of 
this algorithm is to find top-k closed frequent 
itemsets of size more than min-l and less than 
max-l from the TDB over the sliding window SW in 
an efficient manner. 

Table 1 shows transaction ID, transaction items 
and sorted transactions on the bases of support 
count for window W1. Let us consider that we are 
supposed to find top-3 frequent closed itemsets 
between some min-l = 2 and max-l = 4. To sort 
each transaction, frequency count of each item is 
counted in the entire transaction database TDB and 
then order of items in each transaction is 
rearranged in frequency descending order as 
shown in the third column of Table 1. Closed 
frequent itemsets between min-l = 2 and max-l = 4 
in first window W1 of this transaction database TDB 

are: bd = 5,  bda = 3, bdac = 2 

As stated in the previous section that different 
efforts have been made to find frequent itemsets in 
both static and streaming data, it is quite clear that 
FP-growth based algorithms are more efficient but 

problem is how to fit that algorithm to find top-k 
frequent closed itemsets in the streaming 
environment. 

3.  Development of Mining Strategy 

In this section, we introduce a complete method 
to develop an efficient algorithm to find top-k 
closed frequent itemsets in the streaming data 
using the sliding window approach. The 
methodology consists of three major phases i.e. 
scanning of initial transaction database, 
initialization of panes in the window and then 
sorting transactions in frequency descending 
orders in terms of items. Once the transactions are 
sorted in frequency descending order, an efficient 
structure development based on FP-tree to store 
necessary information about the transactions 
called FPS-tree with sliding window approach that 
deals with the removal of the oldest pane of 
transactions and insertion of the newly arriving 
batch of transactions. Finally the top-k closed 
frequent itemsets mining phase starts that 
dynamically adjust support to find top-k frequent 
itemsets between some min-l and max-l. 

3.1 Bit-vector Representation 

Once the initial batch of transaction is received, 
a bit-vector is generated for each item in the 
transaction to process these transactions in an 
efficient manner both at current and next phases of 
the algorithm. Once the initialization of window is 
complete, next phase of FPS-tree data structure 
generation is started. Details of tree-based 
structure are in the next section. Finally, the sliding 
window phase is executed to delete the oldest 
pane of transactions from the generated tree upon 
the arrival of new batch of transactions and then 
insertions of new batch took place. 

 

 

W1  
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Table 2.   Bit-vector representation and sorted order of transactions. 

Item Bit-vectors Support Sorted Sorted-window 

a 110,110 4 b b, d, a, f, j, e, g 

b, d, a, c, f, h, i 

b, d, f, i, j, e, g 

a, c, h, i, e 

b, d, a, c, h, j 

b, d, c, f, h, i, j, g 

 

 

b 111,011 5 d 

c 010,111 4 a 

d 111,011 5 c 

e 101,100 3 f 

f 111,001 4 h 

g 101,001 3 i 

h 010,111 4 j 

i 011,101 4 e 

j 101,011 4 g 

 

Li et al.[13] used bit-vector to represent items in 
the transactional data streams and stored all 
necessary information in the sliding window. This 
representation helps to reduce memory utilization 
and improves efficiency to process items in the 
sliding window environment. The process of bit-
vector representation is described by example as 
follows. 

In each pane of a window, presence of some 
specific item x is represented by 1 while absence is 
represented by 0. For example, transaction 
database shown in Table 1, bit-vectors for item a 
and b in both panes i.e. P1 and P2 (in the entire 
window W1) are BV(a) = 110,110 and BV(b) = 
111,011 respectively. It is clear from the 
transaction database that item „a‟ is present in T1, 
T2, T4, T5, while it is absent in the transactions T3 

and T6. Therefore presence is represented by 1 
and absence by 0 in the current window W1 and 
similarly the item b is present in transactions T1, T2, 
T3, T5, T6 and absent in only one transaction T4. 
Bit-vector representation of transactions in Table 1 
is shown in Table 2.  

Once we have converted transactions into bit-
vector representation, it becomes fairly easy to sort 
transactions in frequency descending order. Before 
inserting transactions into FP-tree based structure, 
sorting of transactions in frequency descending 
order really helps to improve the process of finding 
top-k frequent itemsets.   

FP-growth algorithm need to scan database 
twice to build a compact tree in frequency 
descending order as discussed by Han et al.[43]. 
During the first scan, it counts the frequency of 
each item in the database and produces a list of 
items in frequency descending order. In the 
second scan of database it generates a FP-tree 
that contains of frequent itemsets in a compact 

way so that frequent itemsets generation can be 
achieved in an efficient manner. In streaming data 
environment, it is difficult to process transactions in 
an efficient way so that resources can be made 
available for the continuously arriving transactions. 
Therefore, it is needed to design algorithms that 
need only one scan of transactions to extract 
frequent itemsets. In this approach, we transform 
incoming transactions into a bit-vector to count 
frequency of each item and then generate 
transactions in frequency descending order as 
shown in column sorted-window of Table 2. On the 
bases of sorted-window column, transactions are 
inserted into the FP-tree structure for the first 
window of transactions. Each window is further 
decomposed into 2 panes i.e. P1 and P2 and when 
a new batch (pane) of transaction is received, 
window will be sliding to update its current 
database. There is information for each transaction 
of each pane in the FP-tree therefore it is easier to 
update items information when a window expires 
and slides forward i.e. older pane will be simply 
removed from the FP-tree to create space for the 
upcoming pane and each item pane information in 
the FP-tree is updated 

3.2 FPS-tree Construction 

The construction of FPS-tree to find top-k 
closed frequent itemsets between min-l and max-l 
consists of two phases. In first phase it inserts 
sorted transactions into the tree structure. Second 
phase starts after the expiry of the first window. 
When window expires, items of the oldest pane are 
removed from the FPS-tree and if the remaining 
branches are in frequency descending order 
according to the new sorted window then it will 
keep those branches (unchanged) otherwise those 
branches are adjusted according to the new sort 
order of transactions.  
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Construction of FPS-tree is explained with the 
help of data shown in Table 2. Let us consider that 
each window W consists of 2 panes i.e. P1 and P2 
and each pane contains 3 transactions therefore, 
there are 6 transactions in each window W. On the 
bases of support column, items in the transactions 
are sorted as shown in sorted-item column of 
Table 2 and then sorted transactions are 
generated. Each sorted transaction is inserted into 
the FPS-tree as a branch and if any of the already 
existing branches contains prefix of new 
transaction then relevant bit is set to 1 for all 
shared items in the prefix path and the remaining 
suffix of the new transaction is inserted by initiating 
a sub-branch. Relevant bits in all other branches 
are set to 0 as shown in the Figure 1. 

Initially the construction of FPS-tree starts while 
the entire window W1 is received i.e. both P1 and 
P2 panes have been received. After the 
preprocessing of received transactions, 
transactions in the sorted-window column are 
inserted into the FPS-tree. Figure 2 shows the 
structure of FPS-tree after the insertion of both P1 
and P2 panes i.e. window W1. 

 

Figure 1. FPS-tree after insertion of pane P1. 

Each node in the tree contains information that 
in which transaction it is present and which 
transaction it is missing or absent e.g. a:110,010 
reveals that a is found in transaction T1, T2, T5 and 
not found in transactions T3, T4,and T6 with prefix 
of bd as shown in Figure 2. First three bits 
represent pane P1 and last three bits represent 
pane P2.  

Algorithm: Construction Process of FPS-tree 

Input:Streaming_data, Size_window SW, 
Size_pane P, Sorted_windowW 

Output: Sorted_tree FPS-tree for current set of 
transaction 

Begin 

1. T is a tree with null initialization; 
2. W ← Ø is the window status at start; 
3. Sort_order ← Frequency_descending; 
 // Processing first window 
4. While (w ≠ SW) do 
5.  Call insert_transactions (Tp); 
6.  W = W + 1; 
7. End While;  
 // Processing transactions at each window  
 slide 
8. Repeat 
9. Remove the pane P1 from the tree T; 
 // Removal of oldest pane to create space  
10. Call insert_transactions (Tp);//Insert process 
11. End; 
End 
 
// Pane insertion method 
Insert_transactions (Trans) 
Begin   
1. P ← Ø 
2. While (p  ≠ pane_size) do 
3. Retrieve  the transactions from the current 
 window turn by turn; 
4. Insert the retrieved transactions into tree T; 
5. P = P + 1; 
6. End While 
End 

3.3 Deletion of Items and Restructuring of FPS-
tree  

On the expiry of window W, first pane P1that 
contains transactions T1, T2 and T3 will be removed 
from the FPS-tree to create space for the newly 
arriving pane of transactions i.e. T7, T8 and T9. To 
start the deletion phase, left-most leaf-node is 
processed first e.g. g in our case as shown in 
Figure 2. The bit-victor values of leaf-nodes for 
pane P1 are checked and set to 0 if it is/are already 
set to 1 and then the same bits in the entire prefix 
path are also set to 0. The nodes in the pane P1, 
where all the bits are set to 0, are removed and at 
the same time shift pane P2 to the position of pane 
P1 to create space for the next incoming pane. In 
the cases where after the removal of pane P1, if all 
the bits for the pane P2 are already set to 0 then all 
those nodes are also removed from the FPS-tree  
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Figure 2. FPS-tree after insertion of both panes P1 and P2 (Complete window W1). 

 

 

Figure 3. Branches marked for removal after expiry of window W1. 

 

e.g. in the path b, d, a, f, j, e, g, all bits of pane P2 
in the nodes g, e, j and f are already 0 therefore, 
after the removal of pane P1, these nodes are 
removed from the FPS-tree as shown in Figure 2. 
Figure 3 shows the braches that have all bits set to 

zero after the expiry of pane P1 and are removed 
from the FPS-tree. After the removal of pane P1, 
new FPS-tree structure is shown in Figure 4a and 
it can accept new incoming pane to store. 
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Table 3.   Bit-vector representation and new sorted order of transactions after window slide. 

 
Item Bit-vectors 

after removal 
Bit-vectors 
after insertion 

Support Sorted item Sorted-window 

a 110 110,100 3 b c, i, a, e, h 

b, c, d, j, a, h 

b, c, d, i, j, f, g, h 

b, c, d, a, e, f, g 

b, d, i, j, e, g 

b, c, d, i, j, f 

 

b 011 011,111 5 c 

c 111 111,101 5 d 

d 011 011,111 5 i 

e 100 100,110 3 j 

f 001 001,101 3 a 

g 001 001,110 3 e 

h 111 111,000 3 f 

i 101 101,011 4 g 

j 011 011,011 4 h 

 

 

Figure. 4a.    FPS-tree after the removal of pane P1. 

 

Table 3 shows the bit-vectors for each item 
after the removal of pane P1 and similarly the bit-
vectors after the receiving of new pane P2. Support 
count for each item is updated after the pane P2 is 
processed and new sort order of items is 
generated as depicted in the Table 3. According to 
the new sort order of items, sorted-window of 
transactions is generated in frequency descending 
order. Once all these values have been generated, 
all branches in the FPS-tree are checked to verify 
whether those are in frequency descending order 

or not on the bases of new sort order of items. In 
case, a branch is already according to the new 
sorted list is remained unchanged otherwise 
reordering of that branch is initiated to update the 
FPS-tree. For example the branch b, d, a, c, h, j is 
not according the new sort order of items therefore 
it is removed from the FPS-tree and reinserted as 
per new frequency descending order i.e. b, c, d, j, 
a, h, as shown in Figure 4b. The updated FPS-tree 
according to the new sort order is shown in 
Figure 4b. 
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Figure. 4b. FPS-tree after removal of P1 and in new sort order 

 

 

Figure 5. Tree after insertion of new pane and slide of 
window. 

After the completion of restructuring phase of 
FPS-tree, the insertion phase begins for newly 
arrived pane P2. During the insertion process, 
existing FPS-tree is checked for prefix path for 
each transaction and if there is any path then it is 
shared and relevant bits are set to 1 to increase 
frequency count of those nodes and the remaining 
suffix path is added as a sub-branch and similarly 
relevant bits are set to 1 as well. For example while 
processing the first transaction (b, c, d, a, e, f, g) of 
pane P2, the prefix path b, c, d is already there in 
the FPS-tree therefore it is shared and relevant bits 
of b, c and d are set to 1 and the remaining suffix 
i.e. a, e, f and g is added as a sub-branch and 

relevant bits are also set to 1 as shown in the 
Figure 5.  

3.4 Finding Top-k Closed Frequent Itemsets 

To find top-k closed frequent itemsets, it is most 
important to explain closed frequent itemsets and 
closed-node. Closed itemset is already defined 
and explained in section 2.2, therefore, here we 
need to introduce closed-node only. A node in the 
FPS-tree is called a closed-node if there is no child 
with the same support e.g. if X is a parent-node 
with support of 4 and Y is the child of X with 
support count of 3 then X is called closed-node but 
if support of Y is also 4 then X will not be a closed-
node.  

As the efficiency and performance of any 
algorithm is directly dependent on the facts that 
how efficient are the sub-processes of that 
algorithm therefore to get better performance and 
efficiency, we developed a strategy to find closed-
nodes at early stages. Once we achieve the 
sorted-window as shown in both Table 2 and 
Table 3, insertion phase of transactions in FPS-
tree is started. Closed-node finding process is 
integrated with this insertion phase as follows. 
When first transaction from the sorted-window is 
inserted into the FPS-tree, the leaf-node is marked 
as closed-node. An entry of frequency count with 
itemset is created, as shown in the Table 4, if leaf 
node is greater in length from min-l and less than 
max-l. Similarly, while inserting the next transaction 
into the FPS-tree, it is checked that whether there 
is any prefix path that can be shared. If some prefix 
path is already in the FPS-tree for new transaction, 
that is being inserted then corresponding bits of 
shared prefix path are set to 1 and remaining suffix 
is added as sub-branch of existing one. The node 
at which sub-branch is created is also marked as 
closed-node along with the leaf-node (closed-
node) and entry in the Table 4 is created if this 
closed node is between min-l and max-l. To 
visualize the process of finding closed-node, 
Figure 3 depicts that all closed-nodes are 
represented by double circles. Table 4 represents 
the closed-itemsets while Table 5 represents same 
closed-itemsets in the sorted form using merge 
sort. 

We are interested to find top-k itemsets, 
therefore itemset with maximum support count is 
found from the closed nodes first. Once the closed 
itemset with maximum support is calculated, we 
decrease the count of k by one and next itemset is 
searched accordingly. This process continues until 
the value of k becomes zero. This process of 
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finding top-k reduces number of comparisons and 
overall efficiency is improved. 

Table 4. Closed node count between min-l and max-l. 

Support count Closed-itemsets 

5 b, d 

3 b, d, a 

1 b, d, a, f, j 

2 b, d, a, c 

1 b, d, a, c, f 

1 b, d, a, c, f 

1 b, d, c, f, h 

1 a, c, h, I, e 

 

Table 5. Frequency descending closed node count in between 
min-l and max-l. 

Support count (Sorted) Closed-itemsets 

5 b, d 

3 b, d, a 

2 b, d, a, c 

1 b, d, a, f, j 

1 b, d, a, c, f 

1 b, d, a, c, f 

1 b, d, c, f, h 

1 a, c, h, I, e 

4. Conclusion 

In this paper we have proposed an algorithm to 
find closed frequent itemsets in sliding window 
environment for data streams. To improve 
processing and mining processes, a FP-tree based 
compact tree structure FPS-tree is devised using a 
bit vector representation of the items and sorted 
items lists are maintained. A dynamic approach to 
increase support in finding top-k closed frequent 
itemsets is also presented. Finding frequent 
itemsets of some specified lengths is achieved by 
defining min-length and max-length parameters to 
restrict size of itemsets to be mined. This limiting 
factor really improved the performance of the FPS-
tree in the cases where users are interested in 
those itemsets that are between the length ranges. 
We have performed different experiments to verify 
the performance of FPS-tree and compared it with 
recently proposed efficient algorithms like LDS, 
FCI-Max and TOPSIL-Miner. Results reflect that 
FPS-tree outperformed all the three algorithms on 
different datasets.  
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