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Numerical solution for the flow of an incompressible, steady and viscous   electrically conducting fluid between two horizontal 

parallel non-conducting plates, the lower one is a stretching sheet and the upper one is a porous stretching sheet is found. The effects 

of flow parameters namely M the magnetic parameter,    the suction parameter and R  the Reynolds number have been observed 

on velocity profiles. Similarity transformations have been used. The resulting ordinary differential equations are solved by using 

SOR method and Simpson’s (1/3) rule. The results have been improved by Richardson extrapolation. The numerical scheme is 
straightforward, easy to program and very efficient. 
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1. Introduction 

The flow induced by stretching boundaries is 

important for metal industries and extrusion processes 

in plastic [1, 2]. The fluid flow problems about 

stretching surface have been studied extensively in 

various topics such as porous medium, MHD flows, 

heat transfer and non-Newtonian fluids. Sakiadis [3, 4] 

examined the boundary layer flow on a continuously 

stretching surface with a constant speed. Crane [5] 

found an exact solution of two-dimensional Navier-

Stokes equation for a stretching plate. Chiam [6] 

analyzed steady two dimensional oblique stagnation 

point flow of a viscous fluid. The 

magnetohyderodynamic flow over a stretching surface 

has been studied [7-10] for both permeable and 

impermeable surfaces.  Flow of an electrically 

conducting non- Newtonian fluid past a stretching 

surface was studied by Able et al. [11] when a uniform 

magnetic field acts transverse to the surface. Hayat et al. 

[12] investigated three dimensional flow over a 

stretching surface in a viscoelastic fluid. Kumaran et al. 

[13] obtained an exact solution for a boundary layer 

flow of an electrically conducting fluid past a 

quadratically stretching and linearly permeable sheet. 

This study investigates hyderomagnetic fluid flow 

between two horizontal plates, both the plates being 

stretching sheets to extend the numerical work of Dash 

and Tripathy [14] for ranges of the flow parameters

41  M , 31    and 8.005.0  R .The accuracy 

of numerical results is checked by using three different 

grid sizes. The results are found in good agreement. 

2  Mathematical Analysis 

This flow is considered in the presence of a 

transverse magnetic field. Two equal and opposite 

forces are introduced to stretch the lower and the upper 

plates in a way that the position of the points (0, k) and 

(0, -k) remains unchanged. Cartesian coordinate system 

is used where the y-axis is perpendicular to the plates 

located at y= k, y=- k. The fluid with constant velocity 

0V  is injected through the upper porous plate. The 

external electric field is zero and the electric field due to 

polarization of charges is negligible. The induced 

magnetic field is neglected which is valid for small 

magnetic Reynolds number. 

The governing equations of motion are given below: 
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where vu,  are velocity components and is kinematic 

viscosity coefficient. 
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The boundary conditions are: 

0,  vcxu   at y=- k , 0c  

u = cx, v =  V0  at y= k ,  0c       (4) 

Using similarity transformations: 

 
k

y
ckfvfcxu   ),(,                (5) 

where the primes denote differentiation with respect to 

 and cxu   represents the velocity of both the 

plates. Equation of continuity (1) is identically satisfied. 

Substituting  the relations in equation (5) in to 

equations (2) and (3), we have 
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Now, differentiating equation (6) with respect to   

and equation (7) with respect to x to get 

 fMfffRf 2)2(         (8) 

where   is the constant  of integration and 

kBM 0
 , 

ck

V0
  and 



2
ck

R  . While   

denotes electrical conductivity, 0B  is strength of 

transverse magnetic field,   is the fluid density.  

The corresponding boundary conditions become: 

1)1(,)1(

1)1(,0)1(





ff

ff


      (9) 

3  Finite Difference Equations 

For numerical purpose, let qf         (10) 

Then equation (9) becomes: 

 qMqfqRq
22

)(      (11) 

 The equation (11) is discritized by central 

difference approximation at a typical point n   of 

the interval [0,) to yield 
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where h denotes a grid size and equation (10) is 

integrated numerically.  Also the symbols used denote

)( nqnq  . For computational purposes, we shall 

replace the interval [0,) by [0, b], where b is 

sufficiently large. 

The finite difference equation (12) and the first order 

ordinary differential equations (10) are solved 

simultaneously by using SOR method, Smith [15, 

p.262] and Simpson’s (1/3) rule, Gerald [16, p.293] with 

the formula given by Milne [17, p.48] respectively, 

subject to the appropriate boundary conditions. 

The SOR procedure gives the solution of f = q  in 

the order of accuracy )( 2hO due to second order finite 

differences used for derivatives involved and Simpson’s 

(1/3) rule gives the order of accuracy )( 5hO in the 

solution of f. Higher order accuracy )( 6hO in the 

solution of f = q  is achieved by using Richardson's 

extrapolation, Burden [18, p.168].  

4. Results and Discussion 

The numerical results have been computed for 

different values of flow parameters for ranges

41  M , 31    and 8.005.0  R . The accuracy 

of numerical results is checked by using three different 

grid sizes. The results are found in good agreement. Our 

numerical technique is straightforward and easy to 

program.  

The effects of the flow parameters have been studied 

on the primary velocity f and transverse velocity f. It 

has been noticed that velocity field is almost symmetric 

about the centre of the channel )0(   in case of both 

the plates are being stretched at the same rate but it is 

not the case with the stretching of the lower plate only. 

It has been noted that f  increases in the lower half of 

the channel for increasing R(R<1.0) and decreases, in 

the upper half of the channel. The tables 1to 2 show that 

the numerical scheme is also very efficient. The results 

for f   in the higher order accuracy O )( 6h  are given in 

tables 3 to 6. It is observed that an increase in the value 

of R increases f at all points and transverse velocity 

increases with increase of  (channel width), when M is 

constant.  

The effect of  on the primary flow f   is maximum 

at the center of the channel for fixed values of M. Also 

this effect is same, either both the sheets are being 

stretched or the single sheet is being stretched. Detailed 

comparison, both tabular and graphical for  =1,  =2 
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and  =3 shows that the suction parameter radically 

changes the primary flow velocity f  .  But the value of   

f   increases with the increase of   when M is constant. 

When   is constant and small (  =1) the Lorentz 

force decreases the primary flow velocity f  near the 

lower plate, and increases it near the upper plate. 

The results have been presented in graphical form in 

Figures 1 to 3. 

 

Table 1.   Optimum value of relaxation parameter opt in SOR method when both the plates are being stretching sheets. 

M   R 

Number of  Iterations(NI) in SOR method with opt 

h=0.1 h =0.05 h =0.025 

NI opt NI opt NI opt 

1.0 1.0 0.05 31 1.60 68 1.65 220 1.70 

3.0 1.0 0.05 30 1.60 38 1.65 67 1.70 

3.0 3.0 0.05 75 1.50 79 1.60 92 1.65 

3.0 3.0 0.20 75 1.80 79 1.85 140 1.90 

2.0 3.0 0.05 37 1.60 162 1.65 394 1.71 

4.0 3.0 0.05 33 1.60 38 1.65 48 1.70 

4.0 1.0 0.40 33 1.60 35 1.65 49 1.70 

2.0 3.0 0.80 39 1.60 47 1.65 82 1.70 

4.0 3.0 0.10 33 1.60 38 1.65 54 1.70 

4.0 3.0 0.80 43 1.60 52 1.65 59 1.70 

 
Table 2.   Optimum value of relaxation parameter in SOR method when the lower plate  being stretching sheet. 

M   R 

Number of  Iterations(NI) in SOR method with opt 

h =0.1 h =0.05 h =0.025 

NI opt NI opt NI opt 

1.0 1.0 0.20 23 1.60 56 1.65 160 1.70 

3.0 1.0 0.20 27 1.10 84 1.15 263 1.20 

1.0 3.0 0.20 40 1.60 45 1.65 140 1.74 

1.0 1.0 0.25 28 1.40 97 1.5 289 1.60 

1.0 1.0 0.30 37 1.70 70 1.80 130 1.85 

3.0 1.0 0.25 31 1.60 35 1.65 58 1.70 
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Table 3.    M=1.0,       0.1 , R=0.05  M =3.0,  =1.0, R = 0.05. 

Numerical Results using Richardson Extrapolation Method 

h=0.2  h =0.1  h =0.05 Extrapolated h =0.2  h =0.1  h =0.05 Extrapolated 

  f   f   f   f     f   f   f   f   

0.000 1.000000 1.000000 1.000000 1.000000 0.000 1.000000 1.000000 1.000000 1.000000 

0.400 0.512934 0.512044 0.511817 0.511742 0.400 0.485853 0.482648 0.481824 0.481548 

0.800 0.289751 0.288500 0.288182 0.288076 0.800 0.342666 0.340097 0.339443 0.339223 

1.200 0.291790 0.290538 0.290220 .290114 1.200 0.343433 0.340849 0.340190 0.339970 

1.600 0.517144 0.516253 0.516027 0.515952 1.600 0.487916 0.484681 0.483850 0.483572 

2.000 1.000000 1.000000 1.000000 1.000000 2.000 1.000000 1.000000 1.000000 1.000000 

Table 4.   M =1.0,        = 3.0, R =0.20  M = 2.0,   = 1.0,  R = 0.05. 

Numerical Results using Richardson Extrapolation Method 

h =0.2  h =0.1  h =0.05 Extrapolated h =0.2  h =0.1  h =0.05 Extrapolated 

  f   f   f   f     f   f   f   f   

0.000 1.000000 1.000000 1.000000 1.000000 0.000   1.000000 1.000000 1.000000 1.000000 

0.400 1.789670 1.790962 1.791286 1.791395 0.400   0.767668 0.767608 0.767591 0.767586 

0.800 2.030021 2.031768 2.032206 2.032352 0.800 0.585113 0.585109 0.585107 0.585105 

1.200 1.811893 1.813531 1.813942 1.814079 1.200 0.416443 0.416513 0.416529 0.416534 

1.600 1.150124 1.151166 1.151429 1.151516 1.600   0.231219 0.231311 0.231334 0.231341 

2.000 0.000000 0.000000   0.000000     0.000000 2.000 0.000000 0.000000 0.000000 0.000000 

Table 5.   M =4.0,         =1.0, R =0.05  M =2.0,   =1.0, R =0.05 . 

Numerical Results using Richardson Extrapolation Method 

h =0.2  h =0.1  h =0.05 Extrapolated h =0.2  h =0.1  h =0.05 Extrapolated 

  f   f   f   f     f   f   f   f   

0.000 1.000000 1.000000 1.000000 1.000000 0.000 1.000000 1.000000 1.000000 1.000000 

0.400 0.473828 0.469650 0.468560 0.468193 0.400 1.527394 1.531557 1.532644 1.533010 

0.800 0.368448 0.366258 0.365699 0.365511 0.800 1.632242 1.634416 1.634972 1.635159 

1.200 0.368855 0.366644 0.366079 0.365890 1.200 1.631037 1.633260 1.633830 1.634021 

1.600 0.475190 0.470967 0.469864 0.469493 1.600 1.523363 1.527618 1.528729 1.529104 

2.000 1.000000 1.000000 1.000000 1.000000 2.000 1.000000 1.000000 1.000000 1.000000 
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Figure 1.    Graph of f when both the plates are stretching sheets. 

 

Figure 2.    Graph of f when both the plates are stretching sheets. 

 

Figure 3.    Graph of f   when lower plate being a stretching sheet. 
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Figure 4.    Graph of f for different values of M, R and  . 
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