
The Nucleus 51, No. 3 (2014) 345-353

www.thenucleuspak.org.pk

 345

The Nucleus

I S S N 0 0 2 9 - 5 6 9 8 (P r i n t)

I S S N 2 3 0 6 - 6 5 3 9 (O n l i n e)

Area Efficient Radix 4
2
 64 Point Pipeline FFT Architecture Using Modified CSD Multiplier

F. Siddiq
1*

, H. Jamal
2
, T. Muhammad

1
 and M. Iqbal

1

1Electrical Engineering Department, University of Engineering and Technology, Taxila, Pakistan

2Ghulam Ishaq Khan Institute of Engineering Science and Technology, Topi KPK, Pakistan

(Received March 04, 2014 and accepted in revised form August 18, 2014)

A modified Fast Fourier Transform (FFT) based radix 42 algorithm for Orthogonal Frequency Division Multiplexing (OFDM)

systems is presented. When compared with similar schemes like Canonic signed digit (CSD) Constant Multiplier, the modified CSD

multiplier can provide a improvement of more than 36% in terms of multiplicative complexity. In Comparison of area being

occupied the amount of full adders is reduced by 32% and amount of half adders is reduced by 42%. The modified CSD multiplier
scheme is implemented on Xilinx ISE 10.1 using Spartan-III XC3S1000 FPGA as a target device. The synthesis results of modified

CSD Multiplier on Xilinx show efficient Twiddle Factor ROM Design and effective area reduction in comparison to CSD constant

multiplier.

Keywords: FFT, Radix 42 , OFDM, CSD multiplier, Xilinx, Twiddle factor, FPGA

1. Introduction

The FFT based processor is commonly used in

cellular communication for image and signal

processing. The continuous processing makes pipelined

FFT the major mechanism for low power applications

[1]. In the frequency domain the filtering and

correlation can be executed with lesser number of

processes [2]. Pipelined mechanism is efficient for

lower latency and low power consumption [3]. FFT is

used to compute efficient DFT, and find its applications

in digital spectrum analysis, ultra wide band and multi-

rate filters [4, 5]. The FFT is a set of algorithms which

are more computationally efficient than the DFT [6].

Table 1 represents the computational requirements of

different FFT architectures as depicted in [7]. In radix 2
4

algorithm complex multiplication is minimized [8].

Novel coefficient ordering based low power radix 4 FFT

diminishes the switching activity between consecutive

coefficients was presented in [9].

By choosing the input and output carefully, it leads

to significant memory and latency savings [10]. In

pipeline mechanism radix 4 algorithms is advantageous

as compared to radix 2 algorithms [11]. Computational

and circuit complexity can be balanced by using radix 4

[12]. FFT processor is categorized as the pipeline

mechanism, parallel mechanism and perfect systolic

range [13]. Pipeline mechanism gives a trade of

hardware complexity and dissension rate. Figure 1

depicts the pipeline architecture for FFT [14]. Figure 2

comprises the quantity of computational units scattered

with delay commutator for inter stage data reallocation.

Pipeline FFT Architectures enlisted in Table 2

shows different structures alongwith computational

complexities [15].

2. FFT Algorithm

The N pt. FFT algorithm derived from DFT

framework is:

-
 For k=0, 1……N-1 (1)

The N pt. IFFT is:

--
 For k=0, 1……N-1 (2)

Table 1. Operations required for 64-point FFT.

Operations Radix-2 Radix-4 Radix-8 Split Radix Wino grad

Real Additions 1032 976 972 964 1394

Real Multiples 264 208 204 196 198

Total 1296 1174 1176 1160 1592

 Corresponding author : faisal.siddiq@uettaxila.edu.pk

Paki stan

The Nucleus

The Nucleus 51, No. 3 (2014)

346

Butterfly
commutator

Butterfly
commutator

Butterfly
commutator

input output

V=log4(N)

Stage VStage V-1Stage 1

x x

Coefficient 1 Coefficient V-1

Figure 1. N point radix 4 pipelined FFT processor.

Commutator 1

stage 1

Butterfly 1 stage

1

Multiplier unit 1

stage 1

Commutator 1

stage 2

Butterfly 1 stage

2

Butterfly 1 stage

3

Y1

Coeffecient 1

X(4n)

Commutator 2

stage 1

Butterfly 2 stage

1

Multiplier unit 2

stage 1

Commutator 2

stage 2

Butterfly 2 stage

2

Multiplier 1 unit

stage 2

Butterfly 2 stage

3

Y2

Coeffecient 2

X(4n+1)

Commutator 3

stage 1

Butterfly 3 stage

1

Multiplier unit 3

stage 1

Commutator 3

stage 2

Butterfly 3 stage

2

Multiplier 2 unit

stage 2

Butterfly 3 stage

3

Y3

Coeffecient 3

X(4n+2)

Commutator 4

stage 1

Butterfly 4 stage

1

Multiplier unit 4

stage 1

Commutator 4

stage 2

Butterfly 4 stage

2

Multiplier 3 unit

stage 2

Butterfly 4 stage

3

Y4

Coeffecient 4

X(4n+3)

Figure 2. 64 pt. 4 parallel pipeline mechanism.

Table 2. Relationship of the pipeline FFT architectures.

 Complex Multipliers Complex Adders Memory Control

R2MDC Simple

R2SDF Simple

R4SDF Medium

R4MDC Simple

R4SDC Complex

R22SDF Simple

The Nucleus 51, No. 3 (2014)

 347

Where = - (3)

FFT and IFFT processors have two alterations. FFT

has inverted direction of the multiplier. IFFT has

different standardization feature of in Eqn. (2). N

samples FFT/IFFT computation needs O() arithmetic

operations so lop of chip area is required. By using

radix-r fast Fourier formulation, it reduces to

arithmetic procedures in phases. The

„r‟ can have be 2, 4 or 8 value [15]. There are two

decimation approaches, DIF (Decimation in frequency)

and DIT (Decimation in Time). Radix-4 DIF based FFT

represents the DFT equation as four additions, and also

splits it into 4 equalities, and every equality computes

every 4
th

 output sample. Sub-sequent equalities shows

DIF for radix-4.

-
 (4)

- -

- -
 (5)

-

 (6)

The three twiddle factors are shown:

- -
- (7)

=
- - - (8)

=
- - (9)

Equation (4) can thus be expressed as:

- -
-

 (10)

Four sub- output sequences can be generating by putting

„k=4r, k=4r+1, k=4r+2 and k=4r+3‟:

-
 (11)

- --
 (12)

- --
 (13)

-
-

 (14)

By putting from r = „0‟ to „N/4–1‟:

X (4r), X (4r+1), X (4r+2), and X (4r+3) are N/4-

point DFTs. Every N/4 output is a sum of four input

samples (, and), all

multiplied by -1, j, or +1 –j. Twiddle Factor

(, , or) is multiplied by above sum.

Every N/4-sample DFTs is divided into four N/16-

sample DFTs. Every N/16 DFT is distributed further in

four N/64-Pt.and so on.. A basic radix-4 Processing

element (Butterfly) is represented in Figure 3.

X(n)

X(n+N/4)

X(n+N/2)

X(n+3N/4)

X(4r)

X(4r+1)

X(4r+2)

X(4r+3)

wn

w2n

w3n

Figure 3. Radix-4 DIF FFT butterfly.

Every sample is complex in processing element

(Butterfly unit). A basic Processing Element graph

between inputs and outputs is depicting in Figure 4.

Real and imaginary parts of twiddle factor can be

calculated as follows:

=
-

= - .

Xa+jya

Xb+jyb

Xc+jyc

Xd+jyd

X’a+jy’a

X’b+jy’b

X’c+jy’c

X’d+jy’d

wb

wc

wd

Figure 4. Radix-4 DIF FFT Butterfly, Complex data.

The Nucleus 51, No. 3 (2014)

348

Table 3. The second stage twiddle factors.

k1,k2

n3,n4
0,0 0,1 1,0 1,1

0,0 1 1 1 1

0,1 1

1,0 1

1,1 1

Table 4. Modified CSD binary illustration (means -1).

Coefficients Dec. 2‟s Complement CSD Modified CSD

mo Cos(pi/8) 0.9239 011101100100 100010100100 (0.3827 + 0.0793)*2

m1 Sin(pi/8) 0.3827 001100001111 010100010001
(0.5-0.1173) = (010000000000)

(000100010000)

3. Radix-4
2
 Algorithm

Using a 3-D linear index mapping of radix-4 FFT,

the first two stages in cascade decomposition can be

equated as:

 {0≤n1, n2≤3, n3=0 ~ −1} (15)

 {0≤k1, k2≤3, k3=0 ~ −1}

The DFT equations are:

 (16)

-
}

-
}

The first butterfly stage is:

 (17)

The second butterfly has the structure, is

expressed as

- (18)

Twiddle factor decomposition is

performed by fully dedicated multiplications. In

Eq. (16). The Eq. (18) depicts the first processing

element structure with twiddle factor

multiplication.

 show the value of “1”. have value of cos

(pi/8-jsin (pi/8). This demands a composite multiplier

which can be realized with shift and add operations.

 has value of Cos (pi/4-jsin (pi/4). Twiddle factor

can be obtained by using given trigonometric function:

Cos (pi/4) =sin (pi/4) =2sin (pi/8) cos (pi/8).

 can be written as sin (pi/8)-j cos (pi/8) and

executed by inverting real and imaginary parts of

composite Multiplier . CSD representation is used

for area and power consumption to about 33% [17-18].

Twiddle factor in Table 4 showing the 12-bit

The Nucleus 51, No. 3 (2014)

 349

Table 5. Constant multiplier results by control signals.

S(1) S(0)

0 0 x x y y (x+jy)

0 1 2x 2x 2y 2y (x+jy)

1 0 x x y y (x+jy)

1 1 Bypass mode (x+jy)

Figure 5. Proposed Modified CSD multiplier.

coefficients for both Modified CSD format and 2‟s

complement. Here x+jy is input, the Modified CSD

multiplier for the twiddle factors is represented in

Figure 5. Table 5 representing output product for the

Modified CSD multiplier which can be produced by

control signals (S).

4. R2
i
SDF and R4

i
SDC Pipeline Architecture

Figures 6 and 7 represent the R2
i
SDF pipeline

approach and R4
i
SDC pipeline approach when samples

are 256. The sign, ⊗, characterizes the programmable

multiplier and the mark, ʘ, characterizes the Modified

CSD multiplier. Figure 6(a) shows R2
2
SDF where the

programmable memory for twiddle factor is allotted.

Figure 6(b) shows R2
3
SDF in which 2 programmable

multipliers along with two fix valued multipliers are

allotted. One fix valued multiplier is almost equal to 0.4

programmable multipliers [18-20]. Figure 6(c) depicts

the Modified R2
4
SDF architecture. Two modified CSD

multipliers replace the programmable multiplier that is

used in radix 2
2
SDF. Figure 7(a) depicts the R4SDC in

which the programmable multiplier and memory for the

twiddle factor is allotted for every column. Figure 7(b)

depicts the Modified R4
2
SDC in which two of the

proposed CSD multipliers in the place of programmable

multipliers.

5. Implementation Example

Both real as well as imaginary parts of 12 bit

multipliers are implemented. Out of these multipliers is

the CSD complex one having lesser number of partial

products [17]. The second one is modified CSD

multiplier. For the compensation of quantization error,

less error constant width CSD multiplier [21] together

with reduced error constant width Booth multiplier [22]

is presented. When the input signal is „X‟, the designed

modified CSD multipliers have m0 with m1 CSD

coefficients as presented in Table 4. The implemented

modified CSD multiplier is shown in Figure 8.

Figure 8(a) depicts sin (pi/8); Figure 8 (b) depicts the

model of 0.0793 that is used in the implementation of

cos (pi/8) and similarly figure 8 (c) depicts cos (pi/8).

The Nucleus 51, No. 3 (2014)

350

The comparison of full adders and half adders of

modified Constant complex Multiplier and Constant

Complex Multiplier is shown in Figure 9. When

compared with similar schemes like CSD Multiplier

[17], the modified CSD multiplier can provide

improvement of more than 36% in terms of

multiplicative complexity. In terms of area occupied

amount of Full adders is reduced approximately by 32%

and amount of half adders is reduced by 42% when

compared with [17]. The synthesis of Modified CSD

Multiplier on Xilinx shows the efficient Twiddle Factor

ROM Design in Table 6.

Figure 6. Radix-2i SDF 256 point pipeline FFT (a) R22SDF (b) R23SDF(c) R24SDF.

Figure 7. Radix-4iSDC 256 point pipeline FFT (a) R4SDC (b) R42SDC.

The Nucleus 51, No. 3 (2014)

 351

(a)

(b)

(c)

Figure 8 (a) sin (pi/8) architecture, (b) 0.0793 architecture and (c) cos (pi/8) architecture.

Vector Merging Adder

Vector Merging Adder

Vector Merging Adder

The Nucleus 51, No. 3 (2014)

352

Figure 9. Comparison of full adders and half adders.

Table 6. Synthesis results of proposed modified CSD constant complex multiplier.

Device Utilization Summary

Logic Utilization Used Available Utilization

No. of Slices 7 7680 0%

No. of 4 inputs LUTs 13 15360 0%

No. of bounded IOBs 24 173 13%

Device Utilization Summary

Logic Utilization Used Available Utilization

No. of Slices 6 7680 0%

No. of 4 inputs LUTs 11 15360 0%

No. of bounded IOBs 24 173 13%

6. Conclusion

The proposed pipeline architecture allows 50 percent

of total multipliers to be swapped by CSD multipliers.

Synthesis Results of modified CSD Multiplier shows

the Efficient Twiddle Factor Design. The modified CSD

multiplier scheme is implemented on Xilinx ISE 10.1

using Spartan-III XC3S1000 FPGA as a target device.

When compared with similar schemes like CSD

Multiplier, the modified CSD multiplier can provide a

reduction of more than 36% in terms of multiplicative

complexity. In terms of area occupied amount of Full

adders is reduced approximately by 32% and amount of

half adders is reduced by 42%. Using this technique,

long length FFT processor can be developed for

wireless Applications.

References

[1] W. Han, A. T. Erdogan, T. Arslan and M. Hasan, ETRI Journal

30 (2008) 451.

[2] J. G. Proakis and D. G. Manolakis, Digital Signal Processing,

Prentice Hall of India Private Limited (2003).

[3] A. Saeed, M.Elbably, G. Abdelfadeel and M.I. Eladawy, Int. J.
of Circuits, Systems and Signal Processing 3 (2009) 103.

[4] K. Harikrishna, T.R. Rao and. V.A. Labay, An Efficient FFT
Architecture for OFDM Communication Systems, Asia Pacific

Microwave Conference (APMC), Singapore, 7-10 Dec. (2009)

449.

[5] U. Rashid, F. Siddiq, T. Muhammad and H. Jamal,

The Nucleus 50 (2013) 301.

[6] J.W. Cooley and J.W. Tukey, Math. Computation 19 (1965)

297.

[7] Chi-hau Chen, Signal Processing Handbook, CRC Press (1988).

[8] L. Jia, Y. Gao, J. Isoaho and H. Tenhunen, A New VLSI

Oriented FFT Algorithm and Implementation, Proceedings of

The Nucleus 51, No. 3 (2014)

 353

Eleventh Annual IEEE International ASIC Conference (1998)

p. 337.

[9] M. Hasan, T. Arslan and J.S. Thompson, IEEE Transaction on

Consumer Electronics 49 (2003) 128.

[10] User Guide “FFT MegaCore Function,” Version 8.1, Altera

Corporation. Available: http://www. Altera.com, Nov. (2008).

[11] E.E. Swartzlander, VLSI Signal Processing Systems, Kluwer

Academic Publishers (1998).

[12] Amphion.CS246064-Point Pipelined FFT/IFFT; Available

from: http://www.datasheetarchive.com/ 64-Point-datasheet.

html (2002).

[13] Y. Jung; H. Yoon and J. Kim, IEEE Transactions on Consumer

Electronics 49 (2003) 14.

[14] W. Han, T. Arslan, A. T. Erdogan and M. Hasan, Proc. IEEE
Int. Conf. on Acoustics Speech and Signal Processing 5 (2005)

45.

[15] S. He and M. Torkelson, Designing Pipeline FFT Processor for

OFDM (de) Modulation, Proc. IEEE URSI Int. Symp. Sig.

Syst. Electron (1998) 257.

[16] L. Jia, Y. Gao, Jouni and H. Tenhunen, A New VLSI-oriented

FFT Algorithm and Implementation, IEEE International ASIC

Conf.(1998) 337.

[17] Jung-yeol Oh and Myoung-Seob Lim, Area and Power

Efficient Pipeline FFT Algorithm, IEEE Workshop on Signal
Processing Systems Design and Implementation (2005) 520.

[18] J.Y. Oh, J. S. Cha, S. K. Kim and M. S. Lim, Implementation of
Orthogonal Frequency Division Multiplexing using radix-N

Pipeline Fast Fourier Transform (FFT) Processor, Jpn. J. Appl.

Phys. 42 (2003) 1.

[19] K.K. Parhi, VLSI Digital Signal Processing Systems, John

Wiley & Sons, Inc., USA (1999).

[20] W. C. Yey and C. W. Jen, IEEE Trans. Sig. Proc. 51 (2003)
864.

[21] S. M. Kim, J. G. Chung and K. K. Parhi, IEEE Int. Symp. Cir.

Syst. (2002) 69.

[22] K.J. Cho, K.C. Lee, J.G. Chung and K.K. Parhi, IEEE Trans.
VLSI Syst.12 (2004) 90.

http://www.datasheetarchive.com/%2064-Point-datasheet.html
http://www.datasheetarchive.com/%2064-Point-datasheet.html

