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A modified Fast Fourier Transform (FFT) based radix 42 algorithm for Orthogonal Frequency Division Multiplexing (OFDM) 

systems is presented. When compared with similar schemes like Canonic signed digit (CSD) Constant Multiplier, the modified CSD 

multiplier can provide a improvement of more than 36% in terms of multiplicative complexity. In Comparison of area being 

occupied the amount of full adders is reduced by 32% and amount of half adders is reduced by 42%. The modified CSD multiplier 
scheme is implemented on Xilinx ISE 10.1 using Spartan-III XC3S1000 FPGA as a target device. The synthesis results of modified 

CSD Multiplier on Xilinx show efficient Twiddle Factor ROM Design and effective area reduction in comparison to CSD constant 

multiplier.  
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1. Introduction 

The FFT based processor is commonly used in 

cellular communication for image and signal 

processing. The continuous processing makes pipelined 

FFT the major mechanism for low power applications 

[1]. In the frequency domain the filtering and 

correlation can be executed with lesser number of 

processes [2]. Pipelined mechanism is efficient for 

lower latency and low power consumption [3]. FFT is 

used to compute efficient DFT, and find its applications 

in digital spectrum analysis, ultra wide band and multi-

rate filters [4, 5]. The FFT is a set of algorithms which 

are more computationally efficient than the DFT [6]. 

Table 1 represents the computational requirements of 

different FFT architectures as depicted in [7]. In radix 2
4
 

algorithm complex multiplication is minimized [8]. 

Novel coefficient ordering based low power radix 4 FFT 

diminishes the switching activity between consecutive 

coefficients was presented in [9]. 

By choosing the input and output carefully, it leads 

to significant memory and latency savings [10]. In 

pipeline mechanism radix 4 algorithms is advantageous 

as compared to radix 2 algorithms [11]. Computational 

and circuit complexity can be balanced by using radix 4 

[12]. FFT processor is categorized as the pipeline 

mechanism, parallel mechanism and perfect systolic 

range [13]. Pipeline mechanism gives a trade of 

hardware complexity and dissension rate. Figure 1 

depicts the pipeline architecture for FFT [14]. Figure 2 

comprises the quantity of computational units scattered 

with delay commutator for inter stage data reallocation. 

Pipeline FFT Architectures enlisted in Table 2 

shows different structures alongwith computational 

complexities [15]. 

2. FFT Algorithm 

The N pt. FFT algorithm derived from DFT 

framework is: 

-
         For k=0, 1……N-1          (1) 

The N pt. IFFT is: 

--
   For k=0, 1……N-1      (2) 

 

Table 1.    Operations required for 64-point FFT. 

Operations Radix-2 Radix-4 Radix-8 Split Radix Wino grad 

Real Additions 1032 976 972 964 1394 

Real Multiples 264 208 204 196 198 

Total 1296 1174 1176 1160 1592 
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Figure 1. N point radix 4 pipelined FFT processor. 
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Figure 2. 64 pt. 4 parallel pipeline mechanism. 

Table 2.    Relationship of the pipeline FFT architectures. 

 Complex Multipliers Complex Adders Memory Control 

R2MDC    Simple 

R2SDF    Simple 

R4SDF    Medium 

R4MDC    Simple 

R4SDC    Complex 

R22SDF    Simple 
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Where                  = -         (3) 

FFT and IFFT processors have two alterations. FFT 

has inverted direction of the multiplier. IFFT has 

different standardization feature of  in Eqn. (2). N 

samples FFT/IFFT computation needs O( ) arithmetic 

operations so lop of chip area is required. By using 

radix-r fast Fourier formulation, it reduces to 

arithmetic procedures in phases. The 

„r‟ can have be 2, 4 or 8 value [15]. There are two 

decimation approaches, DIF (Decimation in frequency) 

and DIT (Decimation in Time). Radix-4 DIF based FFT 

represents the DFT equation as four additions, and also 

splits it into 4 equalities, and every equality computes 

every 4
th

 output sample. Sub-sequent  equalities shows 

DIF for radix-4. 

-
      (4) 

- -
   

- -
      (5) 

-
  

      (6) 

The three twiddle factors are shown: 

- -
-        (7) 

=
- - -        (8) 

=
- -        (9) 

Equation (4) can thus be expressed as: 

- -
-

    (10) 

Four sub- output sequences can be generating by putting 

„k=4r, k=4r+1, k=4r+2 and k=4r+3‟: 

-
    (11) 

- --
    (12) 

- --
     (13) 

-
-

     (14) 

By putting from r = „0‟ to „N/4–1‟: 

X (4r), X (4r+1), X (4r+2), and X (4r+3) are N/4-

point DFTs. Every  N/4 output  is a sum of four input 

samples (  , and   ), all 

multiplied by -1, j, or +1 –j. Twiddle Factor 

( , ,  or   ) is multiplied by above sum. 

Every N/4-sample DFTs is divided into four N/16-

sample DFTs. Every N/16 DFT is distributed further in 

four N/64-Pt.and so on.. A basic radix-4 Processing 

element (Butterfly)  is represented in Figure 3. 
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Figure 3.     Radix-4 DIF FFT butterfly. 

Every sample is complex in processing element 

(Butterfly unit). A basic Processing Element graph 

between inputs and outputs is depicting in Figure 4. 

Real and imaginary parts of twiddle factor can be 

calculated as follows: 

= 
-

= - . 
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Figure 4.    Radix-4 DIF FFT Butterfly, Complex data. 
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Table 3.    The second stage twiddle factors. 

k1,k2 

n3,n4 
0,0 0,1 1,0 1,1 

0,0 1 1 1 1 

0,1 1    

1,0 1    

1,1 1    

 

Table 4.   Modified CSD binary illustration (  means -1). 

Coefficients Dec. 2‟s Complement CSD Modified CSD 

mo Cos(pi/8) 0.9239 011101100100 100010100100 (0.3827 + 0.0793)*2 

m1 Sin(pi/8) 0.3827 001100001111 010100010001 
(0.5-0.1173) = (010000000000) 

(000100010000) 

 

3. Radix-4
2
 Algorithm 

Using a 3-D linear index mapping of radix-4 FFT, 

the first two stages in cascade decomposition can be 

equated as:  

    {0≤n1, n2≤3, n3=0 ~  −1}   (15) 

  {0≤k1, k2≤3, k3=0 ~  −1} 

The DFT equations are: 

     (16) 

 

 

-
} 

 

-
}  

The first butterfly stage is: 

    (17) 

 

 

The second butterfly has the structure,  is 

expressed as 

 

-      (18) 

Twiddle factor  decomposition is 

performed by fully dedicated multiplications. In 

Eq. (16). The Eq. (18) depicts the first processing 

element structure with twiddle factor  

multiplication. 

 show the value of “1”.  have value of cos 

(pi/8-jsin (pi/8). This demands a composite multiplier 

which can be realized with shift and add operations. 

 has value of Cos (pi/4-jsin (pi/4). Twiddle factor 

can be obtained by using given trigonometric function: 

Cos (pi/4) =sin (pi/4) =2sin (pi/8) cos (pi/8). 

 can be written as  sin (pi/8)-j cos (pi/8) and 

executed by inverting real and imaginary parts of 

composite Multiplier . CSD representation is used 

for area and power consumption to about 33% [17-18]. 

Twiddle   factor     in  Table  4  showing  the  12-bit 
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Table 5.    Constant multiplier results by control signals. 

S(1) S(0)      

0 0 x  x  y  y  (x+jy)  

0 1 2x  2x  2y  2y  (x+jy)  

1 0 x  x  y  y  (x+jy)  

1 1 Bypass mode (x+jy)  

 

 

Figure 5.    Proposed Modified CSD multiplier. 

coefficients for both Modified CSD format and 2‟s 

complement. Here x+jy is input, the Modified CSD 

multiplier for the twiddle factors  is represented in 

Figure 5. Table 5 representing output product for the 

Modified CSD multiplier which can be produced by 

control signals (S). 

4. R2
i
SDF and R4

i
SDC Pipeline Architecture 

Figures 6 and 7 represent the R2
i
SDF pipeline 

approach and R4
i
SDC pipeline approach when samples 

are 256. The sign, ⊗, characterizes the programmable 

multiplier and the mark, ʘ, characterizes the Modified 

CSD multiplier. Figure 6(a) shows R2
2
SDF where the 

programmable memory for twiddle factor is allotted. 

Figure 6(b) shows R2
3
SDF in which 2 programmable 

multipliers along with two fix valued multipliers are 

allotted. One fix valued multiplier is almost equal to 0.4 

programmable multipliers [18-20].  Figure 6(c) depicts 

the Modified R2
4
SDF architecture. Two modified CSD 

multipliers replace the programmable multiplier that is 

used in radix 2
2
SDF. Figure 7(a) depicts the R4SDC in 

which the programmable multiplier and memory for the 

twiddle factor is allotted for every column. Figure 7(b) 

depicts the Modified R4
2
SDC in which two of the 

proposed CSD multipliers in the place of programmable 

multipliers. 

5. Implementation Example 

Both real as well as imaginary parts of 12 bit 

multipliers are implemented. Out of these multipliers is 

the CSD complex one having lesser number of partial 

products [17]. The second one is modified CSD 

multiplier. For the compensation of quantization error, 

less error constant width CSD multiplier [21] together 

with reduced error constant width Booth multiplier [22] 

is presented. When the input signal is „X‟, the designed 

modified CSD multipliers have m0 with m1 CSD 

coefficients as presented in Table 4. The implemented 

modified CSD multiplier is shown in Figure 8. 

Figure 8(a) depicts sin (pi/8); Figure 8 (b) depicts the 

model of 0.0793 that is used in the implementation of 

cos (pi/8) and similarly figure 8 (c) depicts cos (pi/8).  
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The comparison of full adders and half adders of 

modified Constant complex Multiplier and Constant 

Complex Multiplier is shown in Figure 9. When 

compared with similar schemes like CSD Multiplier 

[17], the modified CSD multiplier can provide 

improvement of more than 36% in terms of 

multiplicative complexity. In terms of area occupied 

amount of Full adders is reduced approximately by 32% 

and amount of half adders is reduced by 42% when 

compared with [17]. The synthesis of Modified CSD 

Multiplier on Xilinx shows the efficient Twiddle Factor 

ROM Design in Table 6. 

 

 

Figure 6.    Radix-2i SDF 256 point pipeline FFT (a) R22SDF (b) R23SDF(c) R24SDF. 

 

 

Figure 7.    Radix-4iSDC 256 point pipeline FFT (a) R4SDC (b) R42SDC. 
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(c) 

Figure 8 (a) sin (pi/8) architecture,  (b) 0.0793 architecture and (c) cos (pi/8) architecture. 
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Figure 9.    Comparison of full adders and half adders. 

 

Table 6.    Synthesis results of proposed modified CSD constant complex multiplier. 

Device Utilization Summary 

Logic Utilization Used Available Utilization 

No. of Slices 7 7680 0% 

No. of 4 inputs LUTs 13 15360 0% 

No. of bounded IOBs 24 173 13% 

 

Device Utilization Summary 

Logic Utilization Used Available Utilization 

No. of Slices 6 7680 0% 

No. of 4 inputs LUTs 11 15360 0% 

No. of bounded IOBs 24 173 13% 

 

6. Conclusion 

The proposed pipeline architecture allows 50 percent 

of total multipliers to be swapped by CSD multipliers. 

Synthesis Results of modified CSD Multiplier shows 

the Efficient Twiddle Factor Design. The modified CSD 

multiplier scheme is implemented on Xilinx ISE 10.1 

using Spartan-III XC3S1000 FPGA as a target device. 

When compared with similar schemes like CSD 

Multiplier, the modified CSD multiplier can provide a 

reduction of more than 36% in terms of multiplicative 

complexity. In terms of area occupied amount of Full 

adders is reduced approximately by 32% and amount of 

half adders is reduced by 42%. Using this technique, 

long length FFT processor can be developed for 

wireless Applications. 
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