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A two step empirical approach is proposed to estimate the effective thermal conductivity of porous solids. The total thermal 

conductivity of solid phase is calculated by assuming different minerals arranged in “parallel”. Then the final effective thermal 
conductivity is calculated by taking in to account the porosity content and an additional empirical parameter related to geometry of 

pore. It is shown that the effective thermal conductivity of a porous rock can be successfully modeled from the thermal conductivity 

of constituent mineral phases determined by x-ray diffraction and porosity measurements by standard methods.  
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1. Introduction 

The effective thermal conductivity (e) of a solid 

material composed of several phases is mostly required 

to be known beforehand in applied science. This 

quantity is related to volume concentration and thermal 

conductivities of the constituent components, and their 

structure and distribution in the sample. Information 

about thermal properties of porous materials such as 

rocks is needed for calculations of heat dissipation from 

underground nuclear explosions and for the rate of heat 

losses from earth due to geothermal gradients [1]. 

Modeling of thermal properties has remained of much 

interest to researchers for various material design and 

industrial applications e.g. for thermal barrier coatings 

[2], nano-particles suspensions [3], porous materials 

[4-6], soils [7], and graphene-based films [8]. Thermal 

conductivity of soil and rock aggregates alongwith the 

insulation material is a necessary parameter for 

determination of current carrying capacity of buried 

cables and of heat losses from underground steam and 

hot water pipes. 

In connection with the oil recovery processes, the 

properties of interest are thermal conductivity (), the 

thermal diffusivity (), and specific heat Cp. Since these 

three quantities are interrelated, (=/Cp), where  is 

density), from known values of any two of these 

parameters third one can be obtained easily. Laboratory 

measurement techniques of thermal conductivity are 

time consuming in addition of specific sample 

preparation requirements and equipment. Various 

theoretical models have been proposed to estimate the 

effective thermal conductivity of a composite from the 

components’ conductivity and material’s structure. Most 

of which are empirical and few are based on the 

effective medium theory. This work presents empirical 

formulation for the estimation of thermal conductivity 

of a multiphase solid composite with minor porous 

phase. 

2. Modeling Effective Thermal Conductivity 

In the most general sense, a porous solid can be 

thought of a heterogeneous mixture of numerous solid 

phases and a fluid phase (gas/air/oil etc.) with their own 

intrinsic thermal conductivities and structural 

distribution. Starting from a very simple case of a 

porous solid consisting of solid phase with effective 

thermal conductivity, s, and pores with porosity, , 

filled with a relatively low conductivity fluid of thermal 

conductivity, f, the overall thermal conductivity for 

such a system will be expected to lie somewhere 

between the conductivities of two phases (solid and 

fluid) because f  s for situations considered here. It is 

distribution of these two quantities in the material that 

determines effective conductivity of that material under 

the limit that no convection is possible. As far as 

existing models to estimate thermal conductivity are 

concerned, the simplest case is of a two phase solid, the 

weighted averages of the conductivities that correspond 

to the well known “parallel” and “series” models [1], 

respectively, yield the following effective thermal 

conductivity (e) : 

For Series model (Figure 1a) 

sfe  )1( 
     

    (1a) 

For Parallel model (Figure 1b) 
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Figure 1. (a) Series and (b) parallel; combination (with respect to 

heat flow Q) of two phase material with thermal 

conductivities, s and f. 

In the “series” distribution, the two phases are 

assumed to be thermally in series with respect to 

direction of heat flow (Q), whereas in “parallel” 

distribution, the two phases are in parallel with respect 

to direction of heat flow. This simple model is 

illustrated in Figure 1 (a, b), which depicts that “series” 

model has more thermal resistance (minimum 

conducting) while “parallel” model has less thermal 

resistance (maximum conducting). These two 

approximations represent upper and lower bounds on 

the effective conductivity of a two phase solid material 

as shown in Figure 4 and are extremely limiting cases 

hardly to be applicable to a real situation. If the material 

is supposed to be consisting of two solid phases with 

conductivities 1 and 2 with volume fractions v1 and v2, 

respectively, then the above equations would be 

modified accordingly. The same principle is applicable 

to mathematical relations given in the whole text. 

 

 
Figure 2. Two possible arrangements of regularly shaped objects: 

(a) fluid areas (white) are not interconnected while solid 

areas are interconnected, (b) fluid phase continuous while 

solid phase is distributed randomly. 

Figure 2 shows somewhat improved distribution of such 

a dispersed media and corresponds to the following 

relations [9] : 

For Figure 2a 
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For Figure 2b 
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The above relations are modified further when (i) 

solid phase acts as a minor phase and uniformly 

distributed in fluid as a major phase, (ii) fluid phase is a 

minor phase uniformly distributed in solid phase. This 

situation is shown in Figure 3 and the effective thermal 

conductivity can be expressed as [9] : 

For Figure 3a 
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For Figure 3b 
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Figure 3. Regular distribution of solid (shaded blocks) and fluid 

(white background) phases: (a) fluid as a major phase and 

solid as a minor phase, (b) solid as a major phase and 
fluid as a minor phase. 

The provisional character of equations 3a and 3b is 

due to the fact that an actual material cannot be thought 

of as consisting of particles not having contact with 

each other throughout the solid phase. More realistic 

approach may be like that of cubic and tetrahedral 

arrangement of grains of a dispersed system 

presupposing spheres of equal sizes and no dependence 

of the degree of filling of spaces on the size of the 

constituent phases. 

Bounds on conductivity proposed by Hashin and 

Shtrikman [10] are tighter than series and parallel 

models (see Figure 4 for more clarity) but are still far 

away in terms of ratios of fluid to solid thermal 

conductivities (f/s<0.01) and may be expressed as 

(Figure 4): 
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Figure 4. Porosity dependence of normalized thermal conductivity 

(e/s) for s/f = 0.1 as described by models in equations 

1, 4 and 5. 

where 
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Another empirical relation given by Ribaud [11] lies 

in between Hashin-Shtrikman bounds and is shown in 

Figure 4: 

)1( 3/23/1   fe       (5) 

According to Brailsford and Major [9] the effective 

thermal conductivity of a two phase material (with 

conductivities 1 and 2, and v1 as volume fraction of 

phase 1) by assuming phase 2 as continuous phase could 

be approximated by : 
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This model is similar to that proposed by Maxwell 

[12] of randomly distributed solid phase in a continuous 

fluid phase, and can be extended to a mixture of 

spherical particles of either phase distributed in the 

second phase. 

The estimation of effective thermal conductivity of a 

porous rock, consisting of a solid phase 

(major/continuous phase) and a fluid phase (minor 

phase), seems much complicated because it is 

essentially a heterogeneous mixture of numerous solid 

and fluid components with their own intrinsic thermal 

conductivities. The solid phase is further a random 

mixture of multiple sub-component minerals of very 

different compositions and completely random 

structural distributions and how to assign a proper value 

of s to solid phase. The minor fluid phase on the other 

hand may be assumed as a single phase (either porosity 

content or air/gas/oil etc.) to a good approximation with 

well established values of f. To avoid time consuming 

and cumbersome sample preparation methods and 

complicated experimental techniques for the 

determination of effective thermal conductivity of a 

multiphase heterogeneous system, a two step approach 

is proposed in this article. Firstly, the thermal 

conductivity of solid phase is computed by using 

thermal conductivities of individual mineral 

components and their respective volume fractions. 

Secondly, net effective thermal conductivity is 

calculated by applying porosity correction by a suitable 

formulation. The mineral contents can be determined by 

taking x-ray diffraction data of a representative sample 

of rock whereas porosity values can be obtained by 

standard density measurements. Let us consider the 

solid as compact with no porosity (low conductivity 

phase) and suppose that the constituent phases with 

conductivity, i, and volume fractions Vi, are arranged 

in parallel (resulting in maximum conductivity), then 

effective conductivity of the matrix will be: 

 iis V       (7) 

The effective thermal conductivity of a porous rock 

may be then calculated by the following relationship 

[13] ; 
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n0 is an empirical exponent depending on the 

porosity, shape, and orientation of the pore. This 

scheme essentially is a parallel-parallel model in a 

porous rock where the solid phase acts as continuous 

phase (interconnected) and the matrix should not look 

like open pore structure type. Normalized thermal 

conductivity is plotted in Figure 5 for different n values. 

The proposed scheme of estimating thermal 

conductivity of porous rocks was applied to the 

published data on porous sandstone by Woodside and 

Messmer [1] where mineral and porosity contents are 

also known. A good agreement is found between 

measured and estimated effective thermal conductivities 

as shown in Figure 6. It can be seen that for certain limit 
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of porosity, the conductivity is overestimated while 

below this limit the reverse is true. The plot in Figure 6 

suggests that for highly porous medium, this model 

seems to have certain limitations. 

 

Figure 5. Plot of normalized thermal conductivity (e/s) as a 
function of porosity as described by model in equation 8 

for different values of exponent n. 

 

Figure 6. Measured (Woodside and Messmer, measured at a 

temperature of 303 K) and calculated thermal 
conductivities of sandstone for n= 7 in equation 8. 

3. Summary 

In summary, various theoretical models for the 

estimation of effective thermal conductivity of porous 

solids has been reviewed and discussed. To predict the 

effective thermal conductivity of multiphase porous 

rocks based on mineral and porosity contents, a two step 

empirical model is proposed in this work. The total 

thermal conductivity of solid phase is calculated by 

assuming different minerals arranged in “parallel”. Then 

the final effective thermal conductivity is calculated by 

taking in to account the porosity content and an 

additional empirical parameter related to geometry of 

pore. The proposed scheme has shown good agreement 

between measured and calculated conductivities; 

however has a limitation for very high porosity 

contents. 
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