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A B S T R A C T 

In this study an analysis has been done to investigate the combined effects of heat and mass transfer 

over an unsteady stretching permeable surface with non-uniform source/sink and thermal radiation. 

The transformed nonlinear boundary layer equations are solved numerically by applying Keller-box 
method. The numerical results are compared and found to be in good agreement with previously 

published results under special cases. Finally, the influence of various embedded flow parameters on 

local skin friction, local Nusselt number and local Sherwood number have been analyzed through 
graphs carefully. 

 

1.  Introduction 

Combined heat and mass transfer problems are of 

importance in many processes and have therefore, received 

a considerable amount of attention in recent years. In 

processes such as drying, evaporation at the surface of a 

water body, energy transfer in a wet cooling tower and the 

flow in a desert cooler, heat and mass transfer occur 

simultaneously. Possible applications of this type of flow 

can be found in many industries. For example, in the power 

industry, among the methods of generating electric power is 

one in which electrical energy is extracted directly from a 

moving conducting fluid. Since the pioneering study by 

Crane [1] who presented an exact analytical solution for the 

steady two-dimensional stretching of a surface in a fluid, 

many authors have been considered various aspect of the 

problem such as heat source, thermal radiation. Therefore, 

any research focusing on the solution of these problems 

always excites researchers and deserves a special attention 

[2-11]. 

Thermal radiation effects may play an important role in 

controlling heat transfer in polymer processing industry 

where the quality of the final product depends on the heat 

controlling factors to some extent. High temperature 

plasmas, cooling of nuclear reactors, liquid metal fluids, 

and power generation systems are some important 

applications of radiative heat transfer from a vertical wall to 

conductive gray fluids. If the entire system involving the 

polymer extrusion process is placed in a thermally 

controlled environment, then radiation could become 

important [12]. Pal and Malashetty [13] have presented 

similarity solutions of the boundary layer equations to 

analyze the effects of thermal radiation on stagnation point 

flow over a stretching sheet with internal heat generation or 

absorption. The effect of radiation on heat transfer 

problems have been studied by [14-16] They analyzed heat 

and mass transfer in two-dimensional stagnation-point flow 

of an incompressible viscous fluid over a steady stretching 

vertical sheet in the presence of buoyancy force and thermal 

radiation. Yusof et al. [17] studied unsteady MHD flow 

over a stretching sheet in the presence of radiation effect. 

The heat generation or absorption may be due to 

chemical reaction and/or dissociation effects in the flowing 

fluid. The presence of heat generation or absorption may 

alter the temperature distribution in the fluid which in turn 

affects the particle deposition rate in systems such as 

nuclear reactors, electronic chips, and semiconductor 

wafers. The exact modeling of internal heat generation or 

absorption is difficult but some simple mathematical 

models may express its average behavior for most physical 

situations. Heat generation or absorption has been assumed 

to be constant, space dependent or temperature dependent. 

Abo-Eldahab and El-Aziz [18] included the effect of non-

uniform heat source /sink on the steady heat transfer with 

suction/ blowing. Pal and Mondal [19] examined the effect 

of non-uniform heat source/sink and variable viscosity on 

MHD non-Darcy mixed convection heat transfer over a 

stretching sheet embedded in a porous medium in presence 

of Ohmic dissipation. Recently, Pavithra and Gireesha [20] 

studied the boundary layer flow over an exponentially 

stretching heat on dusty fluid with heat generation/ 

absorption and viscous dissipation. 

The above studies deal with a steady flow only. 
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However, in some cases the flow field and heat transfer can 

be unsteady due to sudden stretching of the flat sheet or by 

a step change of temperature of the sheet. When the surface 

is impulsively stretched with certain velocity, the inviscid 

flow is developed instantaneously. However, the flow in the 

viscous layer near the sheet is developed slowly, and it 

becomes a fully developed steady flow after a certain 

instant of time. The flow problem caused by the impulsive 

stretching of a sheet has been investigated by Na and Pop 

[21]. They analyzed the unsteady flow past a wall which 

starts impulsively to stretch from rest using both numerical 

and series solution method. Wang et al. [22] investigated 

impulsive stretching of a surface in a viscous fluid. Using 

perturbation they analyzed the complete transient behavior 

of the unsteady viscous flow caused by stretching surface. 

Elbashbeshy et al. [23] studied the heat transfer over an 

unsteady stretching surface with internal heat generation. 

Ishak et al. [24] investigated heat transfer over an unsteady 

stretching permeable surface with prescribed wall 

temperature. Pal [25] studied heat transfer over an unsteady 

stretching permeable surface. Recently, Seini [26] 

investigated the boundary layer flow over an unsteady 

stretching sheet with non-uniform heat source and chemical 

reaction.   

In this paper, we consider the problem of heat and mass 

transfer over an unsteady permeable stretching surface with 

radiation effect and non-uniform heat source/sink. To the 

best of our knowledge, this problem has yet not been 

considered. 

2. Mathematical Formulation 
Consider the unsteady laminar boundary layer flow with 

heat and mass transfer over a stretching permeable surface 

in a quiescent viscous and incompressible fluid. At time 

0t  , the sheet is impulsively stretched with the velocity 

( , )wU x t  along the x  axis. The positive x  coordinate is 

measured along the stretching surface in the direction of 

motion and the positive y  coordinate is measured normal 

to the sheet in the outward direction toward the fluid. Under 

the above assumptions along with the boundary layer 

approximations, the equations that describe the physical 

situation are given by 

0
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2

2

u u u u
u v

t x y y
 
    

   
    

            (2) 

2

2

1 '''r

p p p

qT T T T q
u v

t x y c c y cy



  

   
    

   
              (3) 

2

2

C C C C
u v D

t x y y

   
  

   
                (4) 

where u  and v  are the x   and y  components of the 

velocity vector,   is the fluid viscosity,   is the fluid 

density,   is the fluid thermal conductivity, pc  is the heat 

capacity at constant pressure, and D  is the coefficient of 

mass diffusivity, respectively. The appropriate boundary 

conditions for the above boundary layer equations are 

( , ), , , at 0

0, , as

w w w wu U x t v V T T C C y

u T C y

    

   
           (5) 

The non-uniform heat source/sink, '''q , is modeled as 

[25] 

   * *( , )
''' 'w

w

U x t
q A T T f T T B

x




 

                   (6) 

where 
*A  and 

*B  are the coefficient of space and 

temperature-dependent heat source/sink, respectively. 

We assume that the stretching velocity ( , )wU x t  the 

surface temperature ( , )wT x t  and the surface concentration 

( , )wC x t  are of the form: 

( , ) , ( , ) , ( , )
1 1 1

w w w

ax bx bx
U x t T x t C x t

ct ct ct
  

  
 (7) 

Where ,a b  and c  are positive constants having dimension 

time
-1

 with 1ct  .  
1/ 2

/w w wV U x f   is suction/ 

injection parameter; 0wV   for suction and 0wV   for 

injection. 

The equation of continuity is satisfied if we choose a 

stream function ( , , )x y t  such that   

 ,u v
y x

  
  
 

 

Using the following similarity transformation 

[24, 25]. 
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Using the Rosseland approximation (Raptis [27]), the 

radiation heat flux is given by 

* 4

*
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where * and *k  are the Stefan-Boltzmann constant and 

the mean absorption coefficient, respectively. As done by 

Raptis [27], temperature differences within the flow are 

assumed to be sufficiently small so that 
4T  may be 

expressed as a linear function of temperature T  using a 

truncated Taylor series about the free stream temperature 

T  i.e., 

4 3 44 3T T T T             (10) 

Using (8), Equations (2)-(4) can be written as 
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where prime denote differentiation with respect to  , 

/A c a  is an unsteadiness parameter, /pPr c   is the 

Prandtl number, 
* 3 *16 /3R T k   is the radiation 

parameter, /Sc D  is Schmidt number. The boundary 

conditions (5) becomes   

(0) , '(0) 1, (0) 1, (0) 1,

'( ) 0, (0) 0, (0) 0.

wf f f

f

 

 
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   
          (14) 

with 0wf   and 0wf   corresponding to suction and 

injection, respectively. 

The quantities of physical interest are the local skin-

friction coefficient; local Nusselt number and the local 

Sherwood number are defined as 
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where the wall shear stress w , surface heat flux and mass 

concentration are given by  
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Using (16), quantity (15) can be written as 

1/ 2 1/ 2 1/ 22Re ''(0), / Re (1 ) '(0), / Re '(0)fx x x x x xC f Nu R Sh       
 

          
1/ 2 1/ 2 1/ 22Re ''(0), / Re (1 ) '(0), / Re '(0)fx x x x x xC f Nu R Sh                  (17) 

where Re /x wU x   is the local Reynolds number based 

on the surface velocity. 

We note that for 0A  , and in absence of heat 

source/sink and thermal radiation, the problem under 

consideration reduces to steady-state flow, where the 

closed-form solutions for the flow, thermal and 

concentration fields in terms of Kummer’s functions are 

respectively given by [25] 
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where 
1

wf 


   (with 0  ), and 0 1   and 1   

correspond to injection and suction, respectively. In Eqs. 

(19) and (20),  , ,M a b z  denotes the confluent 

hypergeometric function [28] as follows: 
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Using (14), we have from Eq. (18) 

1
(0) wf f 


    

Using (18) to (20), the skin friction coefficient ''(0)f , 

the local Nusselt number '(0)  and the local Sherwood 

number '(0)  are given by 
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3.  Numerical Solution 

Equations (11) to (13) subject to boundary conditions 

(14) are solved numerically using an implicit finite 

difference scheme, known as the Keller-box. This method 

found to be very suitable in dealing with nonlinear 

parabolic problems as discussed in the book by Cebeci and 

Bradshaw [29]. This solution procedure can be summarized 

by the following four steps : 

1. Reduce equations (11) to (13) to a first-order system by 

introducing the new dependent variables. 

2. Write the difference equations using central 

differences. 

3. Linearize the resulting algebraic equations by 

Newton’s method and write them in matrix-vector 

form.  

4. Use the block-tridiagonal-elimination technique, solve 

the linear system obtained. 

Here, the grid size in   of 0.01 is found to be 

satisfactory for a convergence criterion of 510  which gives 

accuracy to four decimal places. The satisfaction of the 

outer boundary condition is achieved by considering the 

boundary layer thickness 6  . The correctness of our 

numerical method is checked with the results of Ishak et al. 

[24] and Pal [25] as shown in Table 1. It can be seen from 

this table that a very good agreement between the numerical 

results exist. 

Table 1.    Comparison of '(0)  for various values of  ,A   and Pr with previous published results when  A* = B* = R = 0. 

A  
  Pr Ishak et al. [24] Pal [25] Exact solution (Eq. (24)) Present 

0 0.5 0.72 0.4570 0.457026833 0.457026833 0.4570 

  1.0 5.0000 0.500000000 0.500000000 5.0000 

  10.0 0.6452 0.645161290 0.645161289 0.6452 

 1.0 0.01 0.0197 0.019706795 0.019706354 0.0197 

  0.72 0.8086 0.808631352 0.808631350 0.8086 

  1.0 1.0000 1.000000000 1.000000000 1.0000 

  3.0 1.9237 1.923682561 1.923682594 1.9237 

  10.0 3.7207 3.720673903 3.720673901 3.7207 

  100.0 - 12.29408344 12.29408326 12.2940 

 2.0 0.72 1.4944 1.494368414 1.494368413 1.4944 

  1.0 2.0000 2.000000000 2.000000000 2.0000 

  10.0 16.0842 16.08421882 16.08421885 16.0842 

1.0 0.5 1.0 0.8095 0.809511470  0.8095 

 1.0  1.3205 1.320522071  1.3205 

 2.0  2.2224 2.222355356  2.2224 

 

4.  Result and Discussion 

In this study, Figs. 1-3 present the velocity '( )f  , 

temperature ( )   and concentration profiles ( )   for 

different values of unsteadiness parameter A , respectively. 

These results show that the velocity, temperature and 

concentration profiles decrease with an increasing of 

unsteadiness parameter A . These show the important fact 

that the rate of cooling is much faster for higher values of 

unsteadiness parameter whereas it may take longer time for 

cooling during steady flows. 

 

Fig. 1. Velocity profiles for different A . 
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Fig. 2. Temperature profiles for different A . 

 

Fig. 3. Concentration profiles for different A . 

The effect of suction/injection parameter   on the 

velocity, temperature and concentration profiles, 

respectively are illustrated in Figs. 4-6. From these results, 

it is observed that the velocity, temperature and 

concentration profiles decrease with increasing values of 

suction/injection parameter. This is due to the fact that the 

suction have tendency to reduce the boundary layer 

thicknesses. 

 

Fig. 4. Velocity profiles for different  . 

Fig. 7 illustrates the effect of heat source/ sink parameter 
*A  against unsteadiness parameter A  on local Nusselt 

number. This figure shows that the local Nusselt number 

decreases with increasing heat generation  * 0A   

parameter, whereas reverse effect is observed for heat 

absorption  * 0A   parameter. It is also noted that the heat 

source/sink parameter increases with increasing the 

unsteadiness parameter. 

 

Fig. 5. Temperature profiles for different  . 

 

Fig. 6. Concentration profiles for different  . 

Fig. 7. Nusselt number for different A* versus A . 

Fig. 8 depicted the variation of heat source/ sink 

parameter 
*B  against unsteadiness parameter A  on local 

Nusselt number. From this figure, it is observed that local 

Nusselt number increases with increasing heat absorption  
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 * 0B   parameter, whereas reverse effect is observed for 

heat generation  * 0B   parameter. It is also noted that the 

heat source/sink parameter increases with increasing the 

unsteadiness parameter.  

 

Fig. 8. Nusselt number for different 
*B  versus A . 

Fig. 9 represents the local Nusselt number for different 

values of radiation parameter R against Prandtl number 

Pr . It is observed that the local Nusselt number increases 

with increasing Prandtl number. Further, it is noted that 

there is rapid increase in local Nusselt number with increase 

in the value of unsteadiness parameter. 

The effect of Schmidt number on the local Sherwood 

number Sc  against unsteadiness parameter A  is illustrated 

in Fig. 10. From this figure, it is observed that the local 

Sherwood number increases with an increase in the value of 

Schmidt number. It is also noted that the local Sherwood 

number increases with increasing unsteadiness parameter. 

 
Fig. 9. Nusselt number for different R versus Pr. 

Finally, the values of the Sherwood number are 

tabulated in Table 2 for various values of A  and Sc . It is 

noted from this Table that local Sherwood number 

increases with increase in the value of A .  

 

Fig. 10. Sherwood number for different Sc  versus A . 

Table 2. Computed of values of the local Sherwood number for various 

A   and Sc   when  2, 1,R    
* *0.2, 0.2A B  . 

A  Sc  Present results 

0 

0.22 0.5124 

0.94 1.8934 

0.6 

0.22 0.6372 

0.94 2.0266 

1.0 

0.22 0.7073 

0.94 2.1148 

4. Conclusion 

The present study provides the combined effects of heat 

and mass transfer over an unsteady stretching permeable 

surface with non-uniform source/sink and thermal radiation. 

The numerical results obtained and compared with previous 

published results and found in good agreements. In the light 

of present investigation, we found that the velocity, 

temperature and concentration decrease with increasing 

unsteadiness parameter. In addition, the local Nusselt 

number decreases with increasing heat source/sink 

parameter, while reverse trend is seen for radiation 

parameter. Further, the local Sherwood number increases 

with increase in the value of Schmidt number. 
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