
The Nucleus 54, No. 4 (2017) 250-257 

www.thenucleuspak.org.pk 

250 

 

The Nucleus 

I S S N  0 0 2 9 - 5 6 9 8  ( P r i n t )  

   I S S N  2 3 0 6 - 6 5 3 9  ( O n l i n e )  

Paki stan

The Nucleus

Improved Grey Wolf Optimization for Economic Load Dispatch Problem Considering Valve Point 

Loading Effect and Prohibited Operating Zones 

K. Mehmood
* 
and A. Ahmad 

Department of Electrical Engineering, University of Engineering & Technology, Taxila, Pakistan 
 

A R T I C L E  I N F O 

Article history: 

Received : 26 April, 2017 

Accepted : 15 January, 2018 

Published : 31 January, 2018 
 

Keywords: 

Global optimization, 

Economic Load Dispatch (ELD), 

Transmission loss, 

Valve point effect, 

Prohibited operating zones 

 
A B S T R A C T 

Economic load dispatch (ELD) is an important power system operational planning problem.  In the 

past, calculus based techniques have been used for solving convex ELD problem. The practical ELD 

problem is non convex due to valve point effect. This paper presents a new improved grey wolf 
optimization (IGWO) for solving ELD problem considering constraints such as valve point effect, 

transmission losses and prohibited operating zones. Grey wolf optimization (GWO) is a swarm 

intelligence (SI) technique which suffers from stagnation. To overcome this problem differential 
mutation and crossover operations are combined with GWO to form IGWO. The proposed IGWO was 

successfully implemented on 6, 13, 15 and 40 thermal units test systems. For validation, results were 

compared with recent techniques. This comparison proves the superiority of IGWO. 

 

1. Introduction 

Electrical power system is a most essential component 

of today‟s world. Optimal operational planning plays a vital 

role in electrical power system. Thermal power generation 

mainly depends upon fuel. Fuel is scarce and very costly so 

it is important to utilize the fuel efficiently. This optimal 

use of fuel results in saving in fuel cost and also creates a 

good impact on environment which is an important 

perspective in today‟s world. Economic Load dispatch 

(ELD) is the optimal allocation of generation on thermal 

units in such a way that total fuel cost for electricity 

production is minimized subject to the satisfaction of all 

practical constraints. It is highly non-linear and multi-

constrained optimization problem. Confined energy 

resources, rising energy demand and increasing cost of 

thermal power generation makes ELD a very important 

problem in electrical power system [1]. 

In the past, calculus based techniques were used to solve 

this problem. Gradient search, Lambda iteration method, 

Linear programming, Dynamic programming and Lagrange 

multiplier technique were attempted to solve ELD problem, 

but these techniques have some limitations. Objective 

function needs to be differentiable, convex and smooth. 

These techniques get stuck in local minima so, could not 

achieve global minima [2]. 

Artificial intelligence (AI) techniques have been very 

popular for solving global optimization problems. These 

techniques offer several advantages over classical 

techniques. These are simple in nature, robust, flexible and 

gradient free. These also do not stick in local minima [3]. 

These include evolutionary algorithms (EA‟s) and swarm 

intelligence (SI) algorithms. EA‟s are inspired from natural 

evolution process. SI algorithms are inspired from natural 

colonies, flocking of birds and school of fishes. 

Various AI algorithms have been used for solving ELD 

problem like Multi-Tabu Search (MTS) [1], Differential 

Evolution (DE) [2], Hybrid Harmony Search (HHS) [3], 

Real Coded Genetic Algorithm (RCGA) [4], Time Varying 

Acceleration Coefficients with Particle Swarm 

Optimization (TVAC-PSO) [5], Civilized Swarm 

Optimization (CSO) [6], Bacterial Foraging Algorithm 

(BFA) [7], Improved Particle Swarm Optimization (IPSO) 

[8], New Fuzzy Adaptive based Particle Swarm 

Optimization (NAPSO) [9], Ant Colony Optimization 

(ACO) [10], Distributed Sobol Particle Swarm 

Optimization and Tabu Search Algorithm (DSPSO-TSA) 

[11], Fuzzy and Self-Adaptive Particle Swarm Optimization 

(FAPSO) [12], Gravitational Search Algorithm (GSA) [13], 

Shuffled DE (SDE) [14], Genetic Algorithm with special 

class of Ant Colony Optimization (GA-API) [15], Cuckoo 

Search Algorithm (CSA) [16], Particle Swarm Optimization 

(PSO) [17], Hybrid Particle Swarm Optimization with 

Gravitational Search Algorithm (PSO-GSA) [18], Krill 

Herd Algorithm (KHA) [19], Species-based Quantum 

Particle Swarm Optimization (SQPSO) [20], Hybrid 

Harmony Search with Arithmetic Crossover Operation 

(ACHS) [21], Grey Wolf Optimizer (GWO) [22], Random 

Drift Particle Swarm Optimization (RDPSO) [23], 

Backtracking Search Algorithm (BSA) [24], Modified 

Artificial Bee Colony (MABC) [25], Hybrid Chemical 

Reaction Optimization with Differential Evolution (HCRO-

DE) [26], Chaotic Bat Algorithm (CBA) [27] and Kinetic 

Gas Molecular Optimization (KGMO) [28], Grey Wolf 

Optimization (GWO) [29] and Quasi-Oppositional 

Teaching Learning Based Optimization (QOTLBO) [30]. 
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There are some limitations associated with these 

algorithms. Some algorithms have good global searching 

ability but poor local searching ability. Some techniques are 

very sensitive to control parameters. Conventional KHA 

[19] does not find global optimum in high dimensional 

problems. Both DE [2] and PSO [17] suffer from premature 

convergence. 

Grey Wolf Optimization (GWO) is a SI algorithm 

developed by Mirjalili et al. [22]. It has been implemented 

on ELD problem by Prahadan et al. in 2016 [29]. It has 

been observed that GWO suffers from stagnation problem 

due to less effective global searching ability. In this paper 

Differential Mutation and Crossover is combined with 

GWO to form improved Grey Wolf Optimization (IGWO). 

This integration improves the global searching ability of the 

former algorithm.  

2. Problem Formulation 

ELD is a fuel cost minimization problem subject to 

satisfaction of various practical constraints [19]. 

2.1 Objective Function 

Mathematically the minimization of total fuel cost for 

thermal power generation can be expressed as: 

          Minimize: 𝐹𝑇  =  𝐹𝑖 𝑃𝑖 
𝑛
𝑖=1         

Where FT represents total fuel cost of generation, Fi (Pi) 

is the fuel cost of ith generator and Pi is the active power 

generation of ith generator. 

There are two types of ELD problems based on the 

objective function, convex and non-convex problems. The 

convex problem has quadratic fuel cost equation. This 

behavior of thermal units can be modeled as: 

    𝐹𝑖 𝑃𝑖 =  𝑎𝑖 + 𝑏𝑖𝑃𝑖  +  𝑐𝑖𝑃𝑖
2  

In Eq. (2) a, b and c are the fuel cost coefficients. 

In practice, thermal generation units have multiple 

valves for fuel input. The opening and closing of valves 

significantly changes the fuel cost equation of the thermal 

unit. This is known as valve point effect. This results in 

non-convexity in the behaviour of thermal units. This non 

convex behavior can be modeled as: 

        𝐹𝑖 𝑃𝑖 = 𝑎𝑖 + 𝑏𝑖𝑃𝑖  + 𝑐𝑖𝑃𝑖
2|𝑒𝑖𝑠𝑖𝑛(𝑓𝑖(𝑃𝑖 ,𝑚𝑖𝑛  –  𝑃𝑖))|   (3) 

where e and f are constants of valve point effect. 

2.2 Constraints 

ELD is a multi-constrained optimization problem. The 

constraints are generation limits, power balance, prohibited 

operating zones, transmission losses and valve point effect. 

2.2.1 Power balance constraint 

Total generation must be equal to the sum of load 

demand and transmission losses.  

     𝑃𝑖
𝑛
𝑖=1   =   𝑃𝐷  +  𝑃𝐿𝑜𝑠𝑠   

In Eq. (4) 𝑃𝐷  is load demand, 𝑃𝐿𝑜𝑠𝑠  is transmission loss and 

𝑃𝑖  is the generation. 

 Generation limits constraint 

The generation from a thermal unit must be in limits 

     𝑃𝑖 ,𝑚𝑖𝑛 ≤ 𝑃𝑖   ≤  𝑃𝑖 ,𝑚𝑎𝑥        

Where 𝑃𝑖 ,𝑚𝑖𝑛  and 𝑃𝑖 ,𝑚𝑎𝑥  are the minimum and maximum 

limits of generation of ith generator. 

2.2.3 Prohibited operating zones 

There are some regions in the output power of a thermal 

unit where generation is avoided. These regions are known 

as prohibited operating zones. 

𝑃𝑖 ,𝑚𝑖𝑛   ≤  𝑃𝑖   ≤  𝑃𝑖 ,1𝑙  

         𝑃𝑖,𝑗−1𝑢 ≤ 𝑃𝑖   ≤  𝑃𝑖,𝑗 𝑙 𝑗 =  2, ……… , m         

𝑃𝑖,𝑚𝑢   ≤  𝑃𝑖   ≤  𝑃𝑖𝑚𝑎𝑥  

Where m is number of prohibited operating zones, 

𝑃𝑖,1𝑙  is lower limit of jth operating zone of ith unit and 𝑃𝑖 ,𝑗 𝑢  

is upper limit of  jth  operating zone of ith  unit 

2.2.4 Transmission losses 

Load centre are located at very large distance from 

power generation plants. So, transmission losses are 

significant and cannot be neglected. Transmission losses 

are considered using B coefficient method. Losses can be 

modeled as: 

    𝑃𝐿𝑜𝑠𝑠 =   𝑃𝑖𝐵𝑖𝑗𝑃𝑗
n
j=1

n
i=1 + 𝐵0𝑖

𝑛
𝑖=1 𝑃𝑖  +𝐵00 

Where  𝐵00  is constant, 𝐵0𝑖  is vector of same dimension as 

Pi  and 𝐵𝑖𝑗 is Loss coefficient matrix. 

3. Grey Wolf Optimization 

GWO is a novel SI technique developed by Mirjalili 

et al. [22]. The SI algorithm was developed from the 

observance of social hierarchy and collective hunting 

behaviour of grey wolves. 

Grey wolves live in pack. They have group hunting 

behaviour. There are four types of wolves in a pack namely 

alpha, beta, delta and omega wolves. The grey wolves 

follow a leadership hierarchy. Alpha is the leader of the 

grey wolves pack. Alpha is responsible for every type of 

decision making in the pack. They have best knowledge 

about the prey. Therefore, alpha is considered as best wolf 

in the pack. All other wolves follow the decisions made by 

alpha wolves. The second and level leadership in the pack 

is beta wolves. They help alpha in decision making. When 

alpha passes away then beta becomes the best candidate for 

leadership. The third level hierarchy is the delta wolves. 

The delta wolf obeys alpha beta. Delta wolves provide 
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security to the grey wolves pack. The last level of hierarchy 

is the omega. Omega wolves are ordinary wolves. These 

wolves obey all other wolves in the pack. These wolves are 

not involved in the decision making process.  These omega 

wolves are allowed to eat when all other wolves finish 

eating. 

Grey wolves are popular for their group hunting 

behaviour. In GWO algorithm the grey wolves move 

through a bumpy search space in order to hunt a prey. The 

alpha, beta and delta wolves estimate the prey location and 

update themselves and omega wolves position around the 

prey. The distance of a grey wolf from the prey determines 

its fitness value. The goal is to reach the prey through 

shortest path. The alpha wolf has better information about 

the position of prey so these are considered as best wolves 

in a pack, then comes beta and delta wolves. In this 

algorithm best solutions are saved throughout the whole 

iterative process. The group hunting behavior of grey 

wolves is presented in three different stages; searching, 

encircling and hunting. 

4. Improved Grey Wolf Optimization 

GWO has been implemented on ELD problem by 

Pradhan et al. [29]. It has been observed that GWO 

technique has lower global searching ability due to the fact 

that sometimes it goes into stagnation [33]. So if we avoid 

this problem we can get better results. We have operators 

like differential mutation which is famous for its global 

searching ability. In this paper differential mutation and 

crossover operations are combined with GWO to enhance 

exploration of this technique in order to get better results. 

The combination of these operations with GWO results in 

IGWO. 

4.1 IGWO implemented on ELD 

Step 1:  

In this step initial population containing generation 

allocation is randomly initialized. Population size which is 

the no. of grey wolves is chosen in this step. The population 

contains Nw number of grey wolves each containing Ng 

number of thermal generators. 
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Step 2: 

Evaluate the fitness value of all the wolves (solutions). 

For this place feasible solutions in the objective function of 

the problem.  Identify   Pα, Pβ and Pδ as first, second and 

third best wolves according to their fitness values and also 

identify the global best solution. In the first iteration Pα 

(alpha solution) is the global best solution. 

Step 3: 

Apply the operation of encircling to find distance 

between any omega wolf and three best wolves.  

          Dα =  | C1 ∗ Pα − Pi t  |        

          Dβ =  | C2 ∗ Pβ − Pi t |      

          Dδ =   C3 ∗ Pδ − Pi t    

Step 4: 

Apply the operation of hunting to compute next 

generation𝑃𝑖  (𝑡 + 1). The positions of omega wolves are 

updated relative to the positions of alpha, beta and delta 

wolves. 

            P1  =  Pα − (A1 ∗ Dα )      

            P2  =  Pβ −  A2 ∗ Dβ       

     P3  =  Pδ − (A3 ∗ Dδ )      

           Pi  (t + 1) = ( P1 + P2 + P3 )/3     ( 

Step 5 

Apply the mutation operation 

          Pi  = Pgbest + F (Pa − Pb )  

Where 𝑖 =  1,2,3, ……… ,𝑁𝑤  , 

𝑖 ≠ 𝑔𝑏𝑒𝑠𝑡   ,𝑎 ≠ 𝑏 ≠ 𝑖 ≠ 𝑔𝑏𝑒𝑠𝑡 

The mutation scaling factor is represented by „F‟. Its 

value ranges from 0.4 to 1. This factor controls the global 

searching ability of the optimization process. 

Step 6: 

Apply the crossover operation. Uniform crossover will 

be used. After this operation jth component of ith wolf is 

given by: 

       𝑃𝑗
𝑖=   

𝑃𝑗𝑖𝑓𝑟𝑎𝑛𝑑 <𝐶𝑟
𝑟

𝑃𝑗
𝑖𝑒𝑙𝑠𝑒

       

Where=  1,2, …… . 𝐷,     𝑖 = 1,2, …… .𝑁𝑤 , Cr is the 

crossover probability. In proposed IGWO, crossover 

probability is not a constant rather it depends upon the 

relative fitness of an individual in the population. It is 

defined in [20] as: 

           Cr = 0.2 * relative fitness      

Step 7: 

Check generation limits and prohibited operating zones. 

If these constraints are violated then fix them. Check load 

balance constraint. If equality constraint violates then apply 

equality constraint handling mechanism. 

Step 8 

If stopping criteria is satisfied then stop, get the 

optimum generation allocation otherwise go to Step 2 and 

perform next iteration. 
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5. Simulation Results 

In this research proposed IGWO has been applied on 6, 

13, 15 and 40 thermal units test systems. The proposed 

algorithm has been implemented using MATLAB 11 on 

dual core PC. 

Test system 1 is a convex six units test system with load 

demand of 1263 MW. Prohibited operating zones and 

transmission losses are considered. 

Test system 2 is a non-convex thirteen units test system. 

Load demands of 1800 MW and 2520 MW are considered. 

Transmission losses are accounted in both cases 

Test system 3 is a convex fifteen units test system.  

Prohibited operating zones and transmission losses are 

taken into account. 

Test system 4 is a non-convex forty units test system. 

Transmission losses and prohibited operating zones are 

considered. 

5.1 Test System 1 

The system data for this test system is obtained from 

Mandal et al. [19]. The number of wolves for this case is 

30. The maximum iterations are 300. The numbers of trials 

are 50. Table 1 provides the generation and total fuel cost 

achieved from IGWO. The total fuel cost is 15442.2 $/hr. 

Transmission losses calculated are 12.3123 MW. For 

validation the total fuel cost achieved from IGWO is 

compared with other algorithms in Table 2. From this 

comparison it is concluded that fuel cost achieved from 

IGWO is lowest. Fig. 1 gives the convergence curve for test 

system 1. 

Table 1:    Results for test system11 

Unit  Pmin 
(MW) 

Pmax 
(MW) 

Generation 
(MW) 

Fuel cost  
($/hr) 

1 100 500 449.706 4803.6 

2 50 200 170.060 2175.3 

3 80 300 264.036 3091.7 

4 50 150 141.972 1943.1 

5 50 200 164.547 2164.3 

6 50 120 85.0014 1264.2 

Total 1275.30 15442.2 

Transmission losses        12.3123 MW  

 

5.2   Test System 2 

This is a thirteen units test system. The system data is 

obtained from Adarsh et al. [27]. Load demands are 1500 

MW and 2520 MW. The numbers of wolves for this case 

are 30. The maximum iterations are 1000. The numbers of 

trials are 50. In Table 3 the results of this test system with 

load demand of 1800 MW are given. A comparison of 

results achieved from IGWO with other algorithms  is  

provided  in Table 4. Similarly for 2520 MW 

Table 2:    Comparison of results for test system 1 

Technique Best cost 

($/hr) 

Worst cost 

($/hr) 

Average 

Cost($/hr) 

Standard 

deviation 

MTS [1] 15450.06 15453.64 15451.17 0.9287 

DE [2] 15449.77 15449.874 15449.77 NA 

NAPSO[9] 15443.76 15443.765 15443.76 NA 

GAAPI [15] 15607.47 15449.85 15449.81 NA 

CSA [16] 15443.07 - - NA 

PSO [17] 15450.84 15,492 - NA 

KHA-1 [19] 15450 15455.456 15452.82 NA 

KHA-2 [19] 15448.2117 15453.428 15450.83 NA 

KHA-3 [19] 15445.3560 15449.607 15447.21 NA 

KHA-4 [19] 15443.0752 15443.326 15443.18 NA 

SQPSO[20] 15442.9543 15443.021 15442.97 0.0180 

MABC [25] 15449.8995 15,449.89 15,449.8 6.04 * 10-8 

HCRO-

DE[26] 

15443.075 - - - 

CBA [27] 15450 15,518.65 15,454.7 2.965 

GWO [29] 15443 15445 15444 0.77459 

Proposed 

IGWO 

15442.20 15442.76 15442.6 0.123299 

 

 

Fig 1:    Convergence curve for test system1 

results and comparison with other algorithms are given in 

Tables 5 and 6. Convergence curve for these two cases are 

provided in Figs. 2 and 3. 

5.3 Test System 3 

The system data is obtained from Gaing [31]. The 

numbers of wolves for this case are 30. The maximum 

iterations are 500. The numbers of trials are 50. Prohibited 

operating zones are considered. The 2
nd

, 5
th

 and 6
th
 

generators have only one prohibited operating zone. The 

12
th

 generator has two prohibited operating zones. The total 

generation and fuel cost achieved from proposed IGWO is 

provided in Table 7. The minimum generation achieved 

from proposed algorithm is 32550.32 $/hr. Transmission 

losses are 26.9 MW. A comparison of results with other 

algorithms is provided in Table 8. Convergence curve for 

this test system is given in Figure 4. After some iteration, 

there is no significant change in fuel cost because the 

iterative process converges. 
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Table 3:    Results for test system 2 (load=1800MW) 

Unit Pmin 

(MW) 

Pmax 

(MW) 

Generation 

(MW) 

Fuel cost 

($/hr) 

1 0 680 627.57 5751.5 

2 0 360 299.24 2783.3 

3 0 360 299.83 2791.2 

4 60 180 160.98 1506.2 

5 60 180 160.35 1495.3 

6 60 180 159.91 1487.7 

7 60 180 160.79 1502.8 

8 60 180 159.21 1485.4 

9 60 180 159.27 1485.3 

10 40 120 118.65 1218.2 

11 40 120 77.421 809.0 

12 55 120 89.606 942.7 

13 55 120 91.784 944.4 

Total 2564.6 24202.2 

 

Table 4:    Comparison of results for test system 2 

Technique Best cost 

($/hr) 

Worst 

cost ($/hr) 

Average 

cost ($/hr) 

Standard 

deviation 

SDE [14] 18134.49 - 18138.56 NA 

MABC [25] 18127.78 18134.31 18129.70 2.95 

GWO [29] 17974.22 18031.00 17994.67 7.00 

Proposed 

IGWO 

17945.07 18001.00 17962.00 5.00 

 

Table 5:    Results for test system 2 (load=2520MW) 

Unit Pmin 

(MW) 

Pmax 

(MW) 

Generation 

(MW) 

Fuel cost 

($/hr) 

1 0 680 448.31 4242.7 

2 0 360 74.678 918.0 

3 0 360 222.71 2152.9 

4 60 180 108.35 1096.7 

5 60 180 159.25 1485.4 

6 60 180 159.39 1485.1 

7 60 180 109.26 1095.3 

8 60 180 159.04 1485.7 

9 60 180 159.41 1485.1 

10 40 120 39.987 474.5 

11 40 120 74.013 806.1 

12 55 120 54.987 607.6 

13 55 120 55.114 609.6 

Total 1824.41 17945.1 

Transmission losses                                24.4066  MW 

 

Table 6:    Comparison of results for test system 2 (load = 2520 MW) 

Technique Best cost 

($/hr) 

Worst cost 

($/hr) 

Average cost 

($/hr) 

Standard 

deviation 

SDE [14] 24514.88 - 24516.31 NA 

MABC 

[25] 

24514.875

6 

24514.875

6 

24514.875 3.50 * 

10-7 

GWO [29] 24308 24335 24319 8.5 

Proposed 

IGWO 

24202.156 24228.351 24210 7.021 

 

 

Fig. 2:    Convergence curve for test system 2(load=1800 MW) 
 

 

Fig. 3:    Convergence curve for test system 2(load=2520MW) 

 

Fig. 4:    Convergence curve for test system 3 
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5.4 Test System 4 

This is a large test system containing forty thermal 

units. The system data is obtained from Coelho and Mariani 

[32]. The valve point effect prohibited operating zones and 

transmission losses are considered. The numbers of wolves 

for this case are 40. The maximum iterations are 1000. The 

numbers of trials are 50.The generation and total fuel cost 

achieved from IGWO is presented in Table 9 .The 

minimum fuel cost achieved from proposed IGWO is 

136430$/hr. A comparison of fuel costs is provided in 

Table 10. It is concluded from this comparison that fuel 

cost achieved from proposed IGWO is lowest. Convergence 

curve is provided in Fig. 5. After some iteration the 

iterative process converges. 

6. Conclusion 

Both convex and non-convex ELD problems 

considering transmission losses are solved by IGWO. The 

minimized fuel cost achieved from proposed algorithm will 

results in fuel cost saving of thermal units. The results of 

this research provided the following conclusions: 

i. Fuel cost saving for first test system (6 units) is 

0.8$/hr. 

ii. Fuel cost saving for second test system (13 units with 

load demand=2520 MW) is 105.844 $/hr. 

iii. Fuel cost saving for third test system (15 units) is 

4.7 $/hr. 

iv. Fuel cost saving for forth test system (40 units) is 

16.85 $/hr. 

Table 7:    Results for test system 3 

Unit Pmin 
(MW) 

Pmax 
(MW) 

Generation 
(MW) 

Fuel cost ($/hr) 

1 150 455 455.00 5328.4 

2 150 455 455.00 5252.9 

3 20 130 130.00 1539.3 

4 20 130 130.00 1539.3 

5 150 470 241.79 2987.6 

6 135 460 460.00 5339.7 

7 135 465 465.00 5183.7 

8 60 300 60.00 900.2 

9 25 162 25.00 453.5 

10 25 160 25.00 443.3 

11 20 80 75.03 971.5 

12 20 80 80.00 1057.3 

13 25 85 25.00 552.7 

14 15 55 15.00 490.9 

15 15 55 15.00 510.0 

Total 2656.90 32550.3 

   Transmission losses (MW) 26.9 

 

 

Table 8:    Comparison of Results for test system 3 

Technique 
Best cost 
($/hr) 

Worst cost 
($/hr) 

Average 
Cost($/hr) 

Standard 
deviation 

DE [2] 32609.85 32641.42 32609.85 NA 

CSO [6] 32588.92 32796.78 32679.88 NA 

IPSO [8] 32704.45 32704.45 32704.45 0 

DSPSOTSA 

[11] 
32715.06 32730.30 32724.63 8.40 

GAAPI [15] 32732.95 - - NA 

PSO [17] 32858.54 33031.00 32989.00 NA 

KHA-1 [19] 32586.37 32598.01 32592.04 NA 

KHA-2 [19] 32569.80 32573.63 32571.45 NA 

KHA-3 [19] 32564.38 32567.33 32566.59 NA 

SQPSO [20] 32704.86 32711.62 32707.08 1.08 

ACHS [21] 32706.57 32706.65 32706.65 NA 

GWO [29] 32555.00 32558.00 32556.95 1.25 

Proposed 

IGWO 
32550.32 32554.80 32552.48 0.99 

 

Table 9:    Results for test system 4 

Technique Best cost 

 ($/hr) 

Worst cost 

($/hr) 

Average 

cost ($/hr) 

Standard 

deviation 

SDE [14] 138157.46 - - NA 

GAAPI 
[15] 

139864.96 - - NA 

KHA-1 [19] 136702.58 136723.84 136715.09 NA 

KHA-2 [19] 136692.65 136713.11 136704.67 NA 

KHA-3 [19] 136683.65 136698.50 136690.77 NA 

KHA-4 [19] 136670.37 136671.86 136671.23 NA 

TLBO [30] 137814.17 - - - 

QOTLBO 
[30] 

137329.86 - - - 

GWO [29] 136446.85 136492.07 136463.96 0.098 

Proposed 

IGWO 

136430.00 136500.00 136460.00 1.500 
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Fig. 5:    Convergence curve for test system 4 

Table 10:    Comparison results for test system 4 

Technique Best cost 
 ($/hr) 

Worst cost 
($/hr) 

Average 
cost ($/hr) 

Standard 
deviation 

SDE [14] 138157.46 - - NA 

GAAPI 

[15] 

139864.96 - - NA 

KHA-1 [19] 136702.58 136723.84 136715.09 NA 

KHA-2 [19] 136692.65 136713.11 136704.67 NA 

KHA-3 [19] 136683.65 136698.50 136690.77 NA 

KHA-4 [19] 136670.370 136671.86 136671.23 NA 

TLBO [30] 137814.17 - - - 

QOTLBO 

[30] 

137329.86 - - - 

GWO [29] 136446.85 136492.07 136463.96 0.098 

Proposed 

IGWO 

136430.00 136500.00 136460.00 1.500 
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