
The Nucleus 54, No. 3 (2017) 164-172

www.thenucleuspak.org.pk

164

Paki stan

The Nucleus

The Nucleus

 I S S N 0 0 2 9 - 5 6 9 8 (P r i n t)

 I S S N 2 3 0 6 - 6 5 3 9 (O n l i n e)

Towards Capturing Security Requirements in Agile Software Development

W. Ahmed
1*

, Y. Hafeez
1
 and G. Chiurlea

2

1University Institute of Information Technology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan

2University of Wolverhampton, Wolverhampton, WV1, U.K

ch.waqasahmed@hotmail.com; yasir@uaar.edu.pk; gina.chiurlea@hotmail.co.uk

A R T I C L E I N F O

Article history :

Received : 23 January, 2017

Accepted : 14 September, 2017

Published : 30 September, 2017

Keywords:

IPTFN

I-IPTFOWA operator

I-IPTFHA operator

MAGDM problem

A B S T R A C T

Software use is an unavoidable reality. Increased use expands the opportunity for malicious use which

threatens security and privacy. There are many factors like data loss, increase in budget cost due to

security breaches, pending legislation and competitive advantage are driving software developers to
integrate security into software development rather than adding security in later stages of development.

The approach presented here addresses elicitation, prioritization, analysis of requirements and

security requirements. This can be done by identifying candidate’s security goals, their categorization
and understanding with stakeholders to develop preliminary security requirements and then

prioritization and at the end security requirements are output.

1. Introduction

Software security is a complex, evolving problem that

has only recently begun to receive additional attention. One

area that needs improvement is building security into

software [1] rather than correcting security flaws after

release. Integrating security requirements into the software

development life cycle (SDLC) from the start can

significantly improve software security and reduce rework

at later stages. However, traditional SDLC processes leave

non-functional requirements, such as security, as an

afterthought. Usually, small software development teams

have limited resources and work in shorter time frames.

The need to balance resources for fast paced software

development projects and to remain competitive in the

market has influenced the shift from traditional to agile

development processes [2]. Therefore, there is a need for a

security requirements approach to aid small, agile

development organizations. So the approach must be easy

to implement and validate in agile software development.

2. Literature Review

Security has predominately been an afterthought to the

software development process. Functional requirements are

developed at the beginning of the process, but non-

functional requirements such as security are often

overlooked. This results in security requirements that are

“bolted on” later in the development cycle or worse, after

the product has been released in response to security events,

market response or regulatory demands [3]. Software

security vulnerability awareness increased not only for

critical system software, but also for common software that

impacted the general public. Highly publicized data

breaches, such as the 2003 theft of over 45 million credit

and debit card data [4], increased awareness among the

general public. Legislation at the state and federal level has

also been increasing as the need for privacy and security

becomes apparent. Some legislation has been longstanding,

such as the Privacy Act of 1974, but additional legislation

has recently been enacted. Privacy and security rules for the

Health Insurance Portability and Accountability Act

(HIPAA) were enacted at the federal level in 2003. Nearly

all states have enacted either security2 or data breach3

notification legislation. Vulnerability awareness also drove

increased security awareness among software engineers

who frequently turned to implementing security

mechanisms in order to mitigate risk. However, this does

not address the core problem that security requirements

need to be built into software from the start, not addressed

later [5]. Small organizations with fewer than twenty people

on the development team are likely to operate with limited

resources. For agile organizations, development will be

iterative and extensive documentation will be less valuable

than developing a working product. Development schedules

are likely to be shorter placing increased emphasis on

project cost and time constraints. Therefore, integrating

security requirements into the software development

process for small, agile organizations requires careful

balancing of project resources and constraints. Increasing

security threats, lack of software engineering security skills,

consumer expectations for secure software and project

constraints for small, agile organizations demonstrates the

need to improve security requirements engineering [6]. The

increased complexity and integration of systems increases

attack surfaces and makes it difficult to understand software

vulnerabilities. Software engineers traditionally do not

receive adequate training or attention to address the security

of software vulnerabilities. Publicity of the latest data

breach or widespread virus now makes front page news. In

Corresponding author

W. Ahmed et al. / The Nucleus 54, No. 3 (2017) 164-172

165

addition, introducing project requirements strain limited

project resources in terms of cost, time and personnel.

Consider the analogy of bank security. A customer walking

into a bank has an assumed expectation of security. They

expect security via safes, locks, guards and identity

verification. These basic security devices are easy to

understand and can be verbalized regardless of technical

expertise. There are likely to be additional security devices

in place at a bank, but understanding these devices requires

additional technical expertise that the general customer

does not possess. While customers do explicitly request all

elements of banking security, they express their

requirements by choosing the bank with a combined fee and

security structure that balances their needs. Consumers of

software have similar security appetites. Security may again

be expected, but verbalizing specific security requirements

may be difficult due to the lack of understanding. It is

difficult to elicit security requirements without the aid of

those experienced with software security. Justifying

additional costs for security, in terms of time or money, can

be a difficult to sell since they are non-functional

requirements.

2.1 Comparison of Security Requirement Elicitation

Techniques

2.1.1 Secure Software Development Lifecycle (SSDL)

touch points

SSDL Touch points consist of architectural analysis,

code review and security testing practices which should be

included in any software security framework. Touch points

provide an overview of practices that should be followed

but do not define specific tasks or processes for

accomplishing these practices.

2.1.2 Open web application security project (OWASP)

cheat sheets

These are used to help and aid software engineers obtain

solutions to specific problems and overall guidance for

application security. Cheat sheets generally focus on

development specific topics rather than requirements

development.

2.1.3 Agent oriented software methodology (AOSE)

The AOSE methodology extends “Formal framework

for modeling and analyzing security and trust requirements

[7]. AOSE takes care of computer systems as well as

organizational environment in which system operates. The

Drawbacks of this is that it lacks the risk information that

could be used for prioritization of goals and the assumption

that requirements have been discovered and identified for

the purpose of modeling and analysis.

2.1.4 The software security framework

The Software Security Framework (SSF) addresses

overall security, not just the development of software

security requirements [7]. SSF is organized into four

domains: Governance, Intelligence, SSDL Touch points,

and Deployment. Each domain has three practices with

individual activities (total 20 activities for all domains).

Although SSF defines specific practices to address security

requirements engineering, the large number of activities

and abstract nature of the framework do not make SSF

suitable as a requirements elicitation solution

2.1.5 Security maturity model

It provides an organization with broad security

perspectives to build an initiative. Deficiencies in any

practice area or domain can be prioritized to improve the

security maturity level for the organization. The

disadvantage is that the organization must still choose an

approach to address deficiencies [8].

2.1.6 Square

To focus on methodology, elicitation and prioritization

are software development phases. The steps of Square

Methodology give results based on recommended input

information. Each step has defined input and output.

Drawback of this methodology lies in step three (Develop

Artifacts). Researchers suggest that these artifacts may be

related to the design phase rather than the requirements

phase [7].

2.1.7 Comprehensive lightweight application security

process (CLASP)

CLASP is intended to be applicable to existing software

or new development projects using high-level perspectives

or views. CLASP views include concepts, roles, activity

assessment, activity implementation and vulnerability. The

iterative nature of CLASP departs from traditional

development and favors agile development. CLASP is not a

one-size fits all solution for improving application security

and specific tools are not defined.

2.1.8 UML sec and secure unified modeling language

Security profiles are generated consisting of a concept

called stereotypes that includes tagged values and

constraints. A goal of UML sec is to aid software engineers

who do not have strong security backgrounds to use UML

sec to model security requirements. The formal nature of

UML diagramming works best in traditional development

but can be a drawback for agile development teams.

2.1.9 Attack patterns and security patterns

Attack patterns describe the techniques that attackers

may use to break software”. Software engineers still need to

have a considerable arsenal of Information available to

begin constructing attack trees.

We propose a security requirements elicitation approach

that is part of the requirements elicitation phase.

Preliminary functional requirements artifacts are used as

inputs and draft security requirements are output. Although

not part of the approach, draft security requirements can be

W. Ahmed et al. / The Nucleus 54, No. 3 (2017) 164-172

166

then modeled, defined and validated as part of the final

software requirements specification (SRS). The security

requirements elicitation approach activities are defined as

follows and displayed in Fig. 1.

Proposed Approach

 Identify candidate security goals

 Categorize security goals based on Security principles.

 Understand stakeholder goals and develop preliminary

Security requirements.

 Prioritize preliminary security requirements.

Fig. 1: Proposed approach for capturing security requirements

The proposed requirements elicitation approach will be

iterative. Part of Speech (POS) tagging activities and the

implementation of a security requirements repository are

also innovative in that they are not currently implemented

by any other approach.

3.1 Security Requirements Repository Design

Activities in the security requirements elicitation

approach depends on the development of a security

requirements repository and below is detail of entities and

attributes for the repository. (Primary keys are denoted as

PK.)

3.1.1 Security terminology entity

Attributes for the security terminology entity are

TerminologyID (PK), Security Term, and Security Term

Description. Security Term attributes is single term that will

be used during POS tagging. The repository will be

populated with terms identified by the requirements

engineer based on experience or using a dictionary of

security terms. Each security term has additional details,

such as definitions or phrases, which enhance the

understanding of each security term (Table 1).

3.1.2 Security principles entity

Attributes for the security principles entity are

PrincipleID (PK), Principle, and Description. Security

principles are confidentiality, integrity, and availability

(CIA), but additional security principles can be defined as

well. Description attributes are definitions or details to

provide a common basis of understanding among

stakeholders (Table 2).

Table 1: Security terms

Security Terms

Access Certificates Malicious

Audit Deny Password

Authenticate Encrypt Permission

Authentication Encryption Privileges

Authorize https Risk

Authorized Logon Security

certificate

Table 2: Security principles and description

Principle Description

Confidentiality Unauthorized disclosure of information

Integrity Unauthorized modification of information

Availability Disruption of access to an information system.

3.1.3 Terminology and principles entity

Attributes for the terminology and principles entity are

TermPrincipleID (PK) and secondary keys, TerminologyID

and PrincipleID.

3.1.4 Requirements artifacts entity

Attributes for the requirements artifacts entity are

ArtifactID (PK), Artifact Name, Artifact Description and

Artifact Type.

3.1.5 Security requirements entity

Attributes for the security requirements entity are

SecReqID (PK), Term PrincipleID, SecReq Description,

SecReq Comments and ArtifactID.

3.1.6 Software requirements entity

Attributes for the software requirements entity are

SoftwareReqID (PK) and secondary key, SecReqID.

3.2 Process of Proposed Technique

The activities in the security requirements elicitation

approach are:

 Identify candidate security goals

 Categorize security goals based on security principles

 Understand stakeholder goals and develop preliminary

security requirements

 Prioritize preliminary security requirements.

W. Ahmed et al. / The Nucleus 54, No. 3 (2017) 164-172

167

Each activity defines inputs, roles, techniques and

output. Inputs are requirements related artifacts. Roles are

the development team and business stakeholders

responsible for the activity.

3.2.1 Identify candidate security goals

Identifying security requirements can be difficult if

stakeholders have difficulty in expressing security related

needs. The result may be functional requirements written

with security terminology that implies security

requirements but that are not explicitly defined. If security

terminology can be discovered, candidate security goals can

be identified that with further analysis could be used to

develop security requirements.

POS tagging method is used to extract opinions from

reviews [9] and is commonly applied to identify features as

noun phrases and opinions as close proximity adjectives.

Parsing tools, such as the Stanford Parser, are also available

to automate POS tagging and determine word frequency.

Proximity of terms may reveal relevant information within

a software requirements document. For example, if the

terms “security” and “encryption” are located within close

proximity of each other, then the terms may be associated

with each other and could reveal an underlying security

requirement. Security terms should therefore be tagged and

follow-up analysis performed to determine if security

requirements can be captured. This is the proposed method

in which POS tagging will be implemented to discover

security requirements.

The requirements engineer take as input preliminary

requirements documents. These documents can be draft of

software requirements specifications (SRS), requests for

proposals (RFP’s) and |other documents i.e. regression test

documents, design documents that will be used to generate

the final software requirements specification. Artifacts are

scanned for commonly used security terminology.

Generating commonly used security terms can be left up to

the knowledge of the requirements engineer or a dictionary

of security terminology can be used if available. Discovered

security terminology and the location within the

requirements artifacts are tagged for additional review.

After all artifacts have been tagged, the requirements

engineer reviews the requirements artifacts and identifies

candidate security goals CSG). CSG are general

requirements written with implied security needs that may

be developed into security requirements. For example, a

requirement artifact was scanned and tagged for the word

malicious. The following functional requirements (FR)

were found:

FR–1: “Malicious applications are detected and stopped”

FR–2: “Malicious applications are handled appropriately”

The requirements engineer would tag the location(s)

where the term malicious was found and generate a CSG

such as:

CSG-1: The system will recognize, catch and calculate

appropriate actions to malicious requests.

Further analysis of the requirement documents also opens

requests related to access policies. CSG can be refined to

include this information:

CSG-1: The system shall recognize, catch and take

appropriate action to malicious requests using security

policies.

After all artifacts have been scanned, tagged and

reviewed, a candidate security goals artifact will be created

as output to identify activity. This artifact will be used as

input to categorize security goals activity.

3.2.2 Categorize security goals based on security

principle

Candidate security goals identified from previous

activity are used as input for categorizing activity. The

requirements engineer and business stakeholders work

together to review all requirements artifacts that have

tagged candidate security goals. Interactive meetings (face-

to-face, web facilitated, teleconference) will likely be the

most efficient, but virtual document review can also take

place. Prior to meetings, the requirements engineer can

assess the goals for quick categorization to facilitate

efficient communications. Each candidate security goal

should be categorized with at least one security principle.

Referring to the earlier example of CSG, from the

identify activity; the following security principles can be

associated with CSG :

SP-1: Confidentiality: Save from unauthorized disclosure

 of information.

SP-2: Integrity: Save from unauthorized changing or

 destruction of information.

The requirements engineer and business stakeholders

will agree upon the general security principles. If a

candidate security goal cannot be categorized, additional

elicitation and analysis can be iteratively undertaken with

the stakeholders. If CSG’s still cannot be categorized after

additional iterations, it will fail the activity andCSG will be

discarded.

3.2.3 Understand stakeholder goals and develop

preliminary security requirements

Using the refined security goals from the categorize

activity, the requirements engineer and business

stakeholders seek to further understand the implications of

the security goals. Additional artifacts such as policies and

regulations are also used as input to this activity. The

requirements engineer chooses techniques and tools to

further elicit information from business stakeholders. Face-

to-face or virtual meetings are a good choice of techniques

for generating discussion. The choice of tools

is likely to be influenced by the requirements engineer but

W. Ahmed et al. / The Nucleus 54, No. 3 (2017) 164-172

168

could include generating misuse or abuse cases, attack

trees, or other security related modeling [10, 11]. The

output from this activity is a set of preliminary security

requirements based on the CSG’s. Continuing with the

previous example, the preliminary security requirement

(PSR) generated from CSG-1 could be:

PSR-1: The system should save the confidentiality and

integrity of data by identifying, detecting and ignoring

malicious applications using security policies.

3.2.4 Prioritize preliminary security requirements

Preliminary security requirements need to be prioritized

to generate the final security requirements. During this

activity, the requirements engineer continues to work with

business stakeholders to analyze the input preliminary

security requirements. Recommended analysis techniques

are Failure Modes and Effects Analysis (FMEA) [12]. This

approach is very useful to communicate and clarify the

impact of technical materials in an easy to understand

format. Analysis requires creating severity, occurrence and

detection rankings in order to determine a risk priority

number (RPN). The RPN is calculated as the product of the

risk rank. FMEA standard scale, Occurrence scale,

Detection scale and FMEA analysis of security

requirements are shown in Tables 3, 4, 5 and 6,

respectively.

Table 3: FMEA standard scale

Impact Rating Rating Criteria: A Failure Could…

Very high 9-10 Virtually inevitable

high 8-7 Failure likely, many known cases

moderate 4-6 Somewhat likely, some known cases

low 3-2 Few known cases

unlikely 1 no known cases

Severity scale = Likely impact of failure

Table 4: FMEA occurrence scale

Impact Rating Criteria: A failure could

Bad 10 Injure a customer

- 9 Be illegal

- 8 Render the software unfit

- 7 Extreme customer dissatisfaction

- 6 Result in partial malfunction

- 5 Cause loss of performance

- 4 Cause minor performance loss

- 3 Cause a minor nuisance

- 2 Be unnoticed

Good 1 Be Unnoticeable and will not effect

performance.

Occurrence Scale = Frequency of failure

Table 5: FMEA detection scale

Impact Rating Criteria: A failure could

Bad 10 >30%

- 9 <=3%

- 8 <=5%

- 7 <=1%

- 6 <=0.3 per 1000

- 5 <=1 per 10,000

- 4 <=6 per 100,000

- 3 <=6 per million

- 2 <=3 per billion

Good 1 <=2 per billion

Detection scale = Ability to detect failure

Table 6: FMEA analysis of security requirements

Failure Effect Severity Occur Detection RPN

malicious

request
Viewed 3 7 9 189

malicious

request
Stolen 9 4 9 324

malicious

request
Corrupted 5 4 4 82

RPN= (severity ranking) (occurrence ranking) (detection ranking).

The resulting RPN generates a prioritized list of

potential security requirements.

4. Implementation of Proposed Work

The security requirements elicitation approach will be

evaluated empirically by analyzing publically available

software requirements specifications (SRS). An internet

search of PDF and Word documents was conducted using

the search term “software requirements specification”. A

base set of 46 SRS documents were downloaded of which

three contained sections specifically for security

requirements. The remaining 43 SRS documents were used

and analyzed using POS tagging. After tagging analysis, a

smaller subset of the tagged documents was selected and

analyzed using the security requirements elicitation steps.

We present POS tagging, security requirements elicitation

and results in the next section.

4.1 POS Tagging

We developed a POS scanner to scan and tag the set of

SRS documents. Small organizations are likely to generate

SRS documents using word processing software rather than

sophisticated software development management software.

All PDF documents were converted to Word 2010 format

(doc) in preparation for scanning. The scanning software

was written in C# which integrates with Microsoft Word

and can easily facilitate the scanning process. The basic

steps in the scanning process are:

W. Ahmed et al. / The Nucleus 54, No. 3 (2017) 164-172

169

1. Open the document

2. Clear all bookmarks

3. Scan for, count and bookmark the location of each

security term

4. Write the document name, security term and frequency

to a text file

5. Save and close the document

Multiple files can be automatically scanned

sequentially. The entire scanning and tagging process is

automated and processing time was approximately 1.5

minutes per document. Table 7 shows the security

terminologies with frequency and rank.

Table 7: Security terminology frequency and rank

Security terminology

Security Term Frequency Rank

Access 416 2

Audit 28 10

Authenticate 5 17

Authentication 30 8

Authorize 0 19

Authorized 146 5

Certificate 205 4

Certificates 85 7

Deny 3 18

Encrypt 12 14

Encryption 20 12

https 14 13

Logon 8 15

Malicious 8 15

Password 237 3

Permission 86 6

Privileges 24 11

Risk 30 8

Security 551 1

No of scanned documents = 43

4.1.1 Analysis of tagged security terms

Five security terms with the highest frequency are

security, access, password, certificate, and authorized.

Security terms with the lowest frequency are authorize,

deny, authenticate, logon and malicious. Figs. 2 and 3

graphically display the security term frequency and average

frequency for each of the selected security terms. The

security term frequency per document revealed a total of

2,854 terms tagged with an average per document

frequency of 66.4. Tagged term frequency ranged from a

low of 14 to a high of 701. The average term frequency

may be skewed by one document that has a very high term

frequency. Without this document the average is closer to

51 but even at 66.4, it is low enough that manual review by

a requirements engineer would not be cumbersome. We

will analyze the SRS documents to determine if the size of

the security term dataset impacts the viability of

discovering candidate security goals. Results from the

elicitation activities were analyzed to determine if the set of

security terms can be pruned to a smaller set or if additional

security terms are needed to generate security requirements.

Table 8 shows the SRS document security term frequency.

Table 8: SRS document security term frequency

Security Term Frequency per SRS Document

Doc No. Frequency Doc No. Frequency Doc No. Frequency

1 119 16 20 31 54

2 24 17 20 32 52

3 20 18 41 33 63

4 14 19 113 34 56

5 35 20 27 35 36

6 22 21 83 36 52

7 701 22 141 37 50

8 17 23 90 38 64

9 44 24 31 39 84

10 29 25 183 40 73

11 36 26 26 41 43

12 21 27 35 42 47

13 18 28 87 43 49

14 14 29 44

15 27 30 49

Average frequency of security terms per document :66.4

Total Security Term Frequency : 2854

Total SRS Documents Scanned: 43

4.2 Security Requirements Elicitation

Eight tagged documents with the highest frequency

were chosen for further analysis using the security

requirements elicitation activities. One of the documents

was eliminated due to formatting issues. The document

with the highest security term frequency was a highly

complex document that specified multiple sub-systems and

contained hundreds of functional requirements. The

complexity of the SRS was not representative of the type of

product that would be developed by a small organization

and was also eliminated.

4.2.1 Identify candidate security goals

Each document was manually reviewed to determine if the

tagged security terms were relevant to identifying candidate

security goals. Custom code facilitated the process by

selecting each tagged term allowing the reviewer to accept

or reject each term based on the context of the language

surrounding each term. Terms could be rejected (false

positives) for a variety of reasons. Acronym lists, glossaries

and references to other documents were common reasons

for rejecting or “un-tagging” a term. Figs. 4 and 5 show the

results of security term frequency before and after false

positives are removed.

W. Ahmed et al. / The Nucleus 54, No. 3 (2017) 164-172

170

Fig. 2: Security term frequency from POS tagging

Fig. 3: Security term average frequency from POS tagging

Carrying out the identification activity requires that the

remaining security terms are analyzed to identify candidate

security goals (CSG). Analysis from one of the SRS

documents reveals the following CSG’s:

CSG-1: The application will also allow for remote access

through a firewall via outside telecommunications networks

by legal users.

CSG-2: The logon screen shall request user name and

corresponding password.

CSG-3: For system login purposes, the hash function shall

also be used to encrypt user passwords.

4.2.2. Categorize security goals based on security

principle

Each of the CSG’s is categorized based on security

principle. Security principles (SP) are commonly known as

the CIA triad which stands for confidentiality, integrity and

availability. Common definitions for the security principles

are:

Fig. 4: Comparison of original and remaining term frequency

Fig. 5: Average security term frequency after reduction

SP-1: Confidentiality: protect against unauthorized

disclosure of information.

SP-2: Integrity: protect against unauthorized modification

or destruction of information.

SP-3: Availability: protect against disruption of access to or

use of information of an information system.

CSG’s can be categorized with multiple security

principles. If no security principles can be applied, CSG

would be rejected.

CSG-1: SP-1, SP-2

CSG-2: SP-2

CSG-3: SP-2

4.2.3 Understand stakeholder goals and develop

preliminary security requirements

Stakeholder goals are elicited for each of the

categorized CSG’s and preliminary security requirements

(PRS) are developed.

PSR-1: The system shall protect confidentiality and

integrity of data by allowing remote access through a

firewall only to authorized users.

PSR-2: The system shall protect integrity of data by

requesting a user name and password prior to access.

PSR-3: The system shall protect confidentiality of user

passwords by encrypting passwords.

W. Ahmed et al. / The Nucleus 54, No. 3 (2017) 164-172

171

 Table 9: Security requirements elicitation template

Security Requirements Elicitation

Document Name:

 Document ID : 19 Original tag count 113

 Project ID : Final tag count 43

1. Identify candidate security goals

 Candidate Security Goals (CSG)

 CSG-1 The application will also allow for remote access through a firewall via outside

 Telecommunication networks by authorized users

 CSG-2 The logon screen shall request user name and corresponding password

 CSG-3 For system login purposes, the hash function will also be used to encrypt user password

2. Categorize security goals based on security principle

 Apply security principle(s) to CSG

 CSG-1 SP-1, SP-2

 CSG-2 SP-2

 CSG-3 SP-2

3. Understand stakeholder goals and develop preliminary security requirements

 Preliminary Security Requirement (PSR)

 PRS-1 The system shall protect confidentiality and integrity of data by allowing remote access

 Through a firewall only to authorized users

 PRS-2 The system shall protect integrity of data by requesting a user name and password prior

 To access

 PRS-3 The system shall protect confidentiality of user passwords by encrypting passwords

4. Prioritize preliminary security requirements

 PSR Effects FMEA RPN Accept/Reject

 PRS-1 Data Stolen 189 Accept

 PRS-2 Data viewer 84 Accept

 PRS-3 Password compromised 162 Accept

 Prioritized Security Requirements (SR)

 SR-1 The system shall protect confidentially and integrity of data by allowing remote access

 Through firewall… only to authorized users

 SR-2 The system shall protect integrity of data by requesting a user name and password prior

 To access.

 SR-3 The system shall protect confidentiality of user passwords by encrypting passwords.

Notes All of the identified requirements should be reclassified as security requirements

4.2.4 Prioritize preliminary security requirements

FMEA analysis is performed on for each PSR. Potential

failure modes and effects are identified. The failure modes

and effects are written in general terms for ease of

understanding and quick analysis. Security Requirement

template is elaborated in Table 9.

5. Conclusion

Resulting security requirements are integrated into SRS

documents and security requirements repository enables

rapid reuse of developed requirements. Key elements of the

elicitation solution are (1) identifying security goals, (2)

categorizing goals by security principle, (3) understanding

stakeholder goals to develop preliminary requirements and

(4) prioritizing security requirements for inclusion into the

SRS document. Stakeholder roles, input artifacts,

techniques and output artifacts are defined for each phase of

the solution. The solution is flexible in order to

accommodate the needs of small, agile software

development organizations but outlines a basic structure

that can be easily implemented. The solution takes place at

the earliest phase of the software development process

during requirements elicitation in order to reduce cost and

rework at later stages of development. The main purpose of

this research is to integrate POS tagging for enhancing the

security requirements elicitation approach. During

evaluation of the solution, we observed that additional work

in POS tagging is needed. An automated tool for this

approach is needed without the involvement of security

expert.

W. Ahmed et al. / The Nucleus 54, No. 3 (2017) 164-172

172

References

[1] M. Beznosov and L. Kruchten, “Get ready for agile methods with

care” Computer, vol. 1, pp. 64-69. 2006.

[2] D. Firesmith, ”Developing secure software and systems”, IEC

Network Security: Technology Advances, Strategies, and Change
Drivers, Chicago, International Engineering Consortium, vol. 1,

pp. 10, 2003.

[3] I. Alexander, “Misuse cases help to elicit non-functional

requirements”, Computing & Control Engineering Journal, vol. 14,

pp. 40-45, 2003.

[4] B. Barnum and S. Sethi, “A software security engineering: A guide

for project managers”, Software Engineering Institute, Carnegie-
Mellon University, Pittsburgh, vol. 1, pp. 1, 2013.

[5] J. Moffett and B. Nuseibeh, “Security requirements engineering: A

framework for representation and analysis, IEEE Transactions on

Software Engineering”, vol. 1, pp. 133-153, 2008.

[6] D. Dave and R. Lawrence, “SQUARETool”, http://www.cert.org/sse/

square/square-tool.html. 2003.

[7] D. Firesmith, "Developing Secure Software and Systems”, IEC

Network Security: Technology Advances, Strategies, and Change

Drivers, Chicago, International Engineering Consortium, vol. 1,
pp. 1, 2003.

[8] K. Limerick, F. Ireland and M. Morisio, “Software engineering for
security: a roadmap”, Paper presented at the Proc. of the Conference

on The Future of Software Engineering, vol. 1, 2004.

[9] J. Mylopoulos and N. Zannone, “Requirements engineering meets

trust management: Model, methodology and reasoning”, Deptt. of

Information and Communication Technology, University of Torento,
Canada, August 29 – September 2, 2005.

[10] J. Hafterson, ”Security Requirements Engineering: A Framework for

Representation and Analysis” , vol.1, pp.18, 2008.

[11] C.G. Harris, “The usage-centric security requirements engineering
(USeR) method”, Information Assurance Workshop, vol. 1, pp. 2,

July, 2012

[12] M. Hu and B. Liu, “Detecting deceptive opinion spam using human

computation”, Paper presented at the Proc. of the 4th Human

Computation Workshop (HCOMP'12), vol. 1, pp. 2, 2004.

