
The Nucleus 53, No. 3 (2016) 208-213

www.thenucleuspak.org.pk

208

The Nucleus

I S S N 0 0 2 9 - 5 6 9 8 (P r i n t)

I S S N 2 3 0 6 - 6 5 3 9 (O n l i n e)

Paki stan

The Nucleus

Effect of Input-Output (IO) Buffering to Minimize Flow Control Blocking in Software

Defined Networking

M.I. Lali
1
, M.M. Bilal

1
, M.S. Nawaz

2*
, M. Deen

1
, B. Shahzad

3
 and S. Khaliq

1

1Department of Computer Science & IT, University of Sargodha, Sargodha, Pakistan
2Department of Information Sciences, School of Mathematical Sciences, Peking University, Beijing, China
3College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia

drikramullah@uos.edu.pk; mussadiqbilal@yahoo.com; msaqibnawaz@pku.edu.cn; moinudeen@gmail.com; bshahzad@ksu.edu.sa;
askhalique@gmail.com

A R T I C L E I N F O

Article history :

Received : 21 July, 2016

Revised : 02 September, 2016

Accepted : 20 September, 2016

Keywords :

Software defined networking

Input output buffers

Latency

Packet delivery ratio

A B S T R A C T

Software Defined Networking (SDN) is a new network technology that tries to overcome the

shortcomings and problems in traditional networks. By centralizing the network state in control

layer, SDN architecture makes it easier to define and enforce consistent policies across the

network. By separating data plane from control plane, dynamic requirements of complex
networks can be easily manage through SDN. For future networks, SDN is already playing a

significant role. SDN offers robustness, flexibility, vendor's independent platform and consistent

policies across the network. In this article, we analyze different Input-Output (IO) buffering
strategies which effect flow control blocking in SDN. We evaluate the performance of three

different IO buffering strategies: single buffering, double buffering and ring buffering. Analyses

of three IO buffering strategies are carried out in terms of two network parameters: latency and
packet delivery ratio (PDR). Our results show that in terms of latency, ring buffering performs

much better than single and double buffering for varying number of hosts and switches in a

network. Furthermore, PDR is significantly minimized by use of buffers during network
congestion in SDN.

1. Introduction

Emerging trends in mobile, social networks, cloud

computing and big data have given new challenges to

future Internet, for which ubiquitous accessibility, high

bandwidth and dynamic management are crucial [1]. In

conventional computer networks, the data plane and

control plane operate together over the same channel for

transmission process. In such networks, control

information and user data is sent over the same channel

and it is difficult to maintain data and information on

same channel. Furthermore, various problems arise such

as bad signaling, reset phone trunk lines, inefficient

network control, network maintenance and up-gradation

[2]. Conventional networks do not meet the current

requirements of end users and faces a-lot of challenges in

configuration of network devices, adding new

functionality and controlling the network behavior from a

single point. In order to mitigate flexibility problems,

researchers have invested an initiative that implements

networks with greater programming capabilities and

reduce the need to replace switching equipment [3]. These

requirements lead to the development of new paradigm in

networking known as Software Defined Networking

(SDN).

SDN [4] is an evolving network structural design

which allows network applications to be controlled and

maintained from a single software module called SDN

controller [5]. SDN is changing the technique of how we

plan, maintain and manage networks and is one of the

most considerable network architecture that shifts the

networking industry in past few years. SDN has a

potential to meet the new network challenges from rising

trends of cloud computing, Internet of things and big data

applications. The goal of SDN is to introduce network

innovations, automation and managing larger networks

from a single entity. By separating the data plane from

control plane and moving the control plane to a

centralized controller, SDN offers network operators a

strong capability to deploy a wide-range of network

policies (such as routing, fault-tolerance and security)

along with the ability to implement new network

technologies [6]. Additionally, the network administration

is much more focused in terms of applications and

services rather than topologies and data management.

More recently, the development of Ethane [7] and

OpenFlow [8] have brought the implementation of SDN

closer to reality.

 Corresponding author

mailto:drikramullah@uos.edu.pk
mailto:msaqibnawaz@pku.edu.cn
mailto:bshahzad@ksu.edu.sa

M.I. Lali et al. / The Nucleus 53, No. 3 (2016) 208-213

 209

OpenFlow is an open standard protocol that provides

researchers to deploy and run new protocols in SDN.

OpenFlow is the first standard interface and a secure

channel through which we can interact with different

layers in SDN [8]. Network devices such as routers and

switches could be accessed through OpenFlow. Several

recent papers have studied particular compositional parts

of SDN [9]. OpenFlow allows us to perform operations

such as inspecting and modifying flow table entries on

network devices. The OpenFlow protocol is used as a key

and standard protocol in SDN to interact with the

forwarding plane of network devices. The Openflow

specification [11] builds up the rules of communication

between a controller and data plane. The Open

Networking Foundation (ONF) [12] brings together about

90 companies and is dedicated to releasing, promoting

and adoption of OpenFlow specification. Standardization

may advance more through new open source associations

OpenDaylight [13] and Estinet [14] projects.

Though, numerous surveys and theoretical literature

exists to date [1, 10, 15, 16] which highlights various

concepts of SDN. Furthermore, in recent years, the

performance of SDN with different parameters and

scenarios is evaluated in [3, 17-20]. However, still it is

not clear which are the different Input Output (IO)

buffering strategies that can identify blocking flows,

which help in minimizing the flow control blocking in

SDN. Flow control blocking and congestion control

minimization is essential in both traditional and SDN

networks in order to achieve high throughput and

minimum packet loss. In SDN, controller is used to

manage network flow control. SDN controllers used

protocols such as OpenFlow for directing switches to

where send packets. Buffer is a place which is shared by

networking devices that are working at different speed.

Buffer permits every networking device to work without

being stalled by some other device in the network.

Buffering strategies are used for many purposes,

including: holding data temporarily in the network,

sending/receiving data over the network, adaptive and

video streaming over the Internet and reduce the impact

of data rate variability during message rate spikes.

Numerous factors play a vital role for effectiveness of

buffer such as buffer's size and selection of algorithm for

transmission of data. In this study, we looked at different

buffering strategies and their effect on blocking in SDN.

We have evaluated the performance of SDN by using

three different IO buffering strategies (single buffering,

double buffering and ring buffering), compare the results

and identify a strategy that performs better in minimizing

blocking flows in SDN. Performance of SDN under

mentioned buffering strategies is evaluated in terms of

latency and packet delivery ratio (PDR).

Mininet [17] is used for simulation of IO buffering

strategies in SDN along with different topologies. Mininet

is an innovative process based network emulator for

prototyping large networks, evaluating performance and

bandwidth usage on a single computer or laptop. In

Mininet, hosts, links, switch and SDN controllers look

like a complete network and users can implement and test

new network features or new architecture. Furthermore,

same code and test scripts can be deployed in a real

production network. We use Mininet python API

programming language for making custom topologies and

scripts.

The rest of the article is organized as follows: Three

IO buffering strategies and network parameters that we

used for performance evaluation are discussed in Section

2. Simulation experiments are performed in Section 3,

where SDN performance is checked and discussed for

different IO buffering strategies. Finally, we conclude the

article and highlight future directions in Section 4.

2. IO Buffering Strategies and Network

Performance Measures

In SDN, network can be managed and controlled

quickly by using a centralized controller. The use of IO

engine in SDN controller offers fast response time and

higher flow setup rate than current SDN controllers. IO

engine uses multi-queue design approach for getting high

performance, which differentiates it from other SDN

controller’s approach. IO engine is the best among current

SDN controllers in processing core scalability issues [21].

Congestion in networks generally occurs when a host is

receiving more data (packets) than it can handle [22].

Congestion can reduce overall quality of service and other

effects of congestion include loss of packet during

transmission, queuing delay and blocking of new

connections. Main aim of congestion control is to keep

the number of packets below a defined level at which

network overall performance dramatically decreases [23].

One of the congestion control mechanism is to use buffers

during network congestion. A buffer is used to

temporarily store data during transmission. IO buffering

strategies that are considered in this work are:

 Single Buffering: In single buffering, we have used

only one buffer to hold the packets during bottleneck

so that latency and delay rates of transmitted packets

could be minimized. The size of the buffer is equal to

RTT × C where RTT is the round trip time of the

packets transmitted over the connection and C is the

data rate of the bottleneck link.

 Double Buffering: In double buffering, we have

used two system buffers instead of one. In this

strategy, we double the size of buffer so that it can

absorb more packets and delay rates of transmitted

packets minimized.

 Ring Buffering: In this technique, more than two

buffers have been used. Each individual buffer is one

M.I. Lali et al. / The Nucleus 53, No. 3 (2016) 208-213

210

unit in a circular buffer. The block diagram for ring

buffering is shown in Fig. 1, where incoming

data/packet is stored before the output. Generally,

data is stored in the buffer when it is retrieved from

an input device or when data is sent to an output

device.Ring buffering works on the basis of first-in-

first-out (FIFO) method, where the oldest (first)

packet in the buffer is processed first.

Fig. 1: Working of ring buffering

We have used latency and PDR as two network

parameters for performance comparison of above

mentioned strategies in SDN.

 Latency: Bandwidth and latency are the two key

elements that contribute to network speed. Latency

has enormous effect on the system speed. Systems

associated with low latency are the one which

encounters little delay, while a high inactivity

association experiences long postpones. Actual

network bandwidth generally varies over time and is

affected by high latencies. Excessive latency

introduces bottlenecks that will stop data from filling

the network pipe, thus bandwidth is decreased.

Impact of latency on network bandwidth depends on

the delays source and this impact can be temporary

(that lasts for few seconds) or it can be persistent

[24].

 Packet Delivery Ratio (PDR):The ratio of delivery

of packets from the point of start to the destination is

called PDR. In other words, to what extent data is

delivered to the destination. This ratio can also be

determined by the ratio of successfully delivered

packets to destination vs. the number of packets

which were sent [25].

3. Simulations and Results

We used Mininet for simulation and performance

measurement. Table 1enlists the basic network simulation

parameters. Multiple scenarios consisting of varying

numbers of node and switch are considered that are

discussed shortly. However, the traffic generated by each

node was at least 10pps. Furthermore, the distance

between each switch varies, so that physical layout and

distance can also be considered for latency. Each

simulation run is of 100 seconds, link bandwidth is 10

MBps and buffer size is RTT × C.

Table 1: Simulation parameters

Parameters Value

Packet size 64KB

Switches Fn = 2n

Traffic Rate 10-100 pps

Simulation Time 100s each case

Link Bandwidth 10 MBps

Buffer Size RTT × C

No of Hosts Fn = 6(n)

Initially, a network in Mininet was established using 1

switch where six clients are attached with it: H1, H2, H3,

H3, H4, H5 and H6. We gradually increased the number

of switches and hosts in order to track out the latency and

delay rates during the packet transmission with three IO

buffering strategy. We have experienced different latency

stats for packets with the interval of 5 seconds. We used

IO buffers at control plane to identify blocking flows in

order to minimize flow control blocking. Fig. 2 shows the

latency and delay rate difference in a network having one

switch and six hosts. In ring buffering technique, latency

time for packets are minimized significantly and having

less certain rises as compared to single and double

buffering approaches.

Fig. 2: Latency variations of six hosts and one switch network

We progressively expanded the number of hosts and

switches to track out latency during packet transmission.

Fig. 3 shows the latency for 2, 4 and 8 switches

respectively. For network with more than one switches,

the results shows certain rise which may be an outcome in

queuing of the packets that are of longer distance across

the networks. Similarly, latency time of delivered packets

significantly improves in ring buffering technique with

increase in the total number of switches and hosts.

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

Packet Number

Ti
m

e
in

 m
s

Single Double Ring

M.I. Lali et al. / The Nucleus 53, No. 3 (2016) 208-213

 211

Fig. 3: Calculated latency variations in networks for (a) 2 hosts and

2 switches network, (b) 16 hosts and 4 switches network and

(c) 16 hosts and 8 switches network

For 4 switches, ring buffering technique

performance improved 30% with respect to the other

techniques, whereas, ring buffering technique shows 50%

improved performance for 8 switches network. We can

say that performance of ring buffering technique

improves for complex network structure. Furthermore,

evaluation of three buffering techniques with 1 switch

performs quiet similarly. However, periodically the result

shows certain rise which may be a result in queuing of the

packets in single and double buffering approaches.

We also compared three buffering techniques for

latency in each strategy as shown in Table 2 and Fig. 4.

Average latency time in single, double and ring buffering

strategies for varying number of switches is listed in

Table 2. As the network become more complicated and

dense, average latency time in each buffering strategies

increases.

Table 2: Comprehensive comparison of three buffering techniques

Network
Topology

Avg. Latency
in Single

Buffering

Avg. Latency
in Double

Buffering

Avg. Latency
in Ring

Buffering

1 Switch 11.86 ms 8.52 ms 5.42 ms

2 Switch 20.87 ms 12.23 ms 6.45 ms

4 Switch 32.08 ms 19.24 ms 10.33 ms

8 Switch 55.09 ms 42.17 ms 21.55 ms

A packet travels multiple hops in the network to

reach its destination. At each hop, intermediate device or

switch process the packet in order to move the packet

forward. Hence, packet processing delay and drop of

packets may be encountered on the network depending

upon the traffic sources, packet size and queue, etc. The

effect of multiple switches for each buffering strategy is

shown in Fig. 4. Furthermore, Fig. 4 illustrates that

latency increases with increase in number of switches in

SDN network. In single buffering (Fig. 4a), latency for 1

and 2 switches is low at packet 70. Latency in single

buffer for packet number 70 and 90 is also low for 8

switches. In addition, there is not much variation in

latency for single buffering in multiple switches. Latency

variation for double bufferingand ring buffering is shown

in Fig. 4b and Fig. 4c respectively. In Fig. 4b, low latency

is encountered for 1 switch at packet number 50, 70, 90

and 100. At packet 50 and 90, low latency is encountered

for 2 switches and low latency is encountered for 4

switches at the end of the packet transmission in the

network. Similarly, in ring buffering, low latency is

encountered for 2 switches at the start of transmission and

at packet 50. For 8 switches, low latency is encountered at

network initialization time and in the middle of

transmission.

Generally, network traffic is inherently bursty and

as a result, all network switches have buffer queues that

absorb additional packets that arrive during traffic bursts.

The buffers then drain during traffic congestion, keeping

average utilization of outgoing links high and causing

lower packet drops. We used buffer so that packet drop

ratio could be minimized in case of congestion. First, we

calculated PDR without using buffer and send 50 packets

in total during a simulation run of 100 seconds. Out of 50

packets, 23 packets were dropped and PDR is calculated

with following formula:

 PDR=
of packet received

of packet sent
 (1)

PDR = 27/50 = 0.54 in case of using no buffer.

Now with the same scenario, we attached a single

buffer and checked PDR. In single IO buffering strategy,

11 packets were dropped. PDR for single buffering

strategy is also calculated from formula 1. PDR = 39/50 =

0.78. In order to increase the PDR, we have used double

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

Packet number

Ti
m

e
in

 m
s

Single Double Ring

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

Packet number

Ti
m

e
in

 m
s

Single Double Ring

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

Packet number

Ti
m

e
in

 m
s

Single Double Ring

M.I. Lali et al. / The Nucleus 53, No. 3 (2016) 208-213

212

buffering strategy. So that maximum number of packets

absorbed by the buffers and packer dropped ratio could

be minimized. In total, 8 out of 50 packets were dropped

with double buffering strategy. For double buffering

strategy, PDR =42/50 = 0.84. For ring buffering strategy,

2 packets were dropped and calculated PDR = 48/50 =

0.96.

Fig. 4: Varying switch latency for (a) single buffering, (b) double

buffering, and (c) ring buffering

In terms of PDR, ring IO buffering strategy shows

almost 20% better performance than single IO buffering

strategy and 12% better performance than double IO

buffering strategy.

4. Conclusion

Legacy networks are troublesome and difficult to

control. On the other hand, SDN truly made networks

simpler and easy to control. SDN is now most utilized

methodology as a part of systems administration. In this

article, we studied the performance of different IO

buffering techniques to minimize blocking in SDN during

heavy network traffic. We analyzed three buffering

techniques i.e. single buffering, double buffering and ring

buffering at control plane. We used different test cases in

Mininet for performance comparison of IO buffering

strategies. Our results showed that ring buffering

technique outperformed both single and double buffering

strategies. We also found that the use of buffers is very

helpful during congestion in SDN and packet drop ratio in

case of congestion could be significantly minimized by

the use of buffers in SDN. Calculated PDR for single and

double buffering strategy is 78% and 84% respectively. In

ring buffering technique, we got much better results and

approximately 96% packets successfully delivered to their

destination hosts.

One interesting area for future is to compare the

performance of IO buffering strategies in other SDN

emulators such as EstiNet and OpenDaylight. Other

interesting area would be the development of high-

performance IO engine that offers fast response time and

higher flow setup rate than state-of-the-art SDN

controllers.

References

[1] W. Xia, Y. Wen, C.H. Foh, D. Niyato and HaiyongXie, “A survey
on software-defined networking”, IEEE Communications Surveys

& Tutorials”, vol. 17, no. 1, pp. 27-51, 2015.

[2] F. Zhao, D. Zhao, X. Hu, W. Peng, B. Wang and Z. Lu, “A 3N

Approach to network control and management”, Proc. of 26th Int.

Parallel and Distributed Processing Symposium Workshops & PhD
Forum, pp. 1237-1242, 2012.

[3] A. Gelberger, N. Yemini and R. Giladi, “Performance analysis of

software-defined networking (SDN)”, Proc. of 21th Int.

Symposium on Modeling, Analysis & Simulation of Computer and

Telecommunication Systems, pp. 389-393, 2013.

[4] H. Kim and N. Feamster, “Improving network management with

software defined networking”, IEEE Communications Magazine,
vol. 51, no. 2, pp. 114–119, 2013.

[5] S. B. Brezetz, G. B. Kamga and M. Tazi, “Trust support for SDN
controllers and virtualized network applications”, Proc. of 1st

IEEE Conf. on Network Softwarization, pp. 1-5, 2015.

[6] M.F. Bari, A.R. Roy, S.R. Chowdhury, Q. Zhang, M.F. Zhani,

R. Ahmed and R. Boutaba, “Dynamic controller provisioning in

Software Defined Networks”, Proc. of 9th Int. Conf. on Network
and Service Management, pp.18-25, 2013.

[7] M. Casado, M.J. Freedman, J. Pettit, J. Luo, N. McKeown and
S. Shenker, “Ethane: Taking control of the enterprise”, ACM

SIGCOMM Computer Communication Review, vol. 37, no. 4,

pp.1-12, 2007.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker and J.mTurner, “OpenFlow:
Enabling innovation in campus networks”, ACM SIGCOMM

Computer Communication Review, vol. 38, no. 2, pp. 69–74,

2008.

10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

Packet number

Ti
m

e
in

 m
s

1 Switch 2 Switches 4 Switches 8 Switches

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

Packet number

Ti
m

e
in

 m
s

1 Switch 2 Switches 4 Switches 8 Switches

10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

Packet number

Ti
m

e
in

 m
s

1 Switch 2 Switches 4 Switches 8 Switches

M.I. Lali et al. / The Nucleus 53, No. 3 (2016) 208-213

 213

[9] P. Lin, J. Bi, Z. Chen, Y. Wang, H. Hu, and A. Xu, “WE-bridge:

West-East Bridge for SDN inter-domain network peering”,
Proceedings of Computer Communications Work-shops

(INFOCOM WKSHPS), pp. 111-112, 2014.

[10] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and

T. Turletti, “A survey of software defined networking: Past,

present, and future of programmable networks”, IEEE
Communications Surveys Tutorials, vol. 16, no. 3, pp. 1617–1634,

2014.

[11] OpenFlow Switch Specification, Version 1.1.0, pp. 1–56, 2011.

[12] Software-Defined Networking: The New Norm for Networks,
Open Networking Foundation, White Paper. [Online],

https://www.openn etworking.org/

[13] J. Medved, R. Varga, A. Tkacik and K. Gray, “OpenDaylight:

Towards a model-driven SDN controller architecture”, Proc. of

15th Int. Symposium on A World of Wireless, Mobile and
Multimedia Networks, pp.1-6, 2014.

[14] S.Y. Wang, C.L. Chou and C.M. Yang, “EstiNetOpenFlow
network simulator and emulator”, IEEE Communications

Magazine, vol. 51, no. 9, pp. 110-117, 2013.

[15] H. Farhday, H.Y. Lee and A. Nakao, “Software-defined

networking: A survey”, Computer Networks, vol. 81, no. 2,

pp. 79-95, 2015.

[16] F. Hu, Q. Hao and K. Bao, “A survey on software defined

networking (SDN) and Openflow: From concept to
implementation”, IEEE Communications Surveys & Tutorials,

vol. 17, no. 4, pp. 2181-2206, 2015.

[17] B. Lantz, B. Heller and McKeown, “A network in a laptop: Rapid

prototyping for software defined networks”, Proc. of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, pp. 1-6, 2010.

[18] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll and
P.Tran-Gia. “Modeling and performance evaluation of an

openflow architecture”, Proc. of 23rd Int. Teletraffic Congress,

pp. 1-7, 2011.

[19] C.N. Shivayogimath and N.V. Uma Reddy, “Performance analysis

of a software defined network using mininet”, Artificial
Intelligence and Evolutionary Computation in Engineering

Systems, pp. 391-398. 2016.

[20] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado and

R. Sherwood, “On controller performance in software-defined

networks”, Proc. of 2nd USENIX Workshop on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and

Services, pp.10–10, 2012.

[21] S. H. Park, B. Lee, J. Shin and S. Yang, “A high-performance IO

engine for SDN controllers”, Proc. of 2014 Third European

Workshop on Software Defined Networks, pp. 121-122, 2014.

[22] P. Gevros, J. Crowcroft, P. Kristein and S. Bhatti, “Congestion

control mechanism and the best effort service model”,
IEEE Networks, vol. 15, no. 3, pp. 16-26, 2001.

[23] W. Stallings, “Data and Computer Communications”, Prentice-
Hall Publishers, 2007.

[24] D. Patterson, “Latency lags bandwidth”, Communications of the
ACM, vol. 47, no. 10, pp.71-75, 2004.

[25] B. Forouzan, “Data Communications and Networking”, Fifth
Edition. McGraw-Hill, NY, USA, pp. 85-98, 2012.

