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A B S T R A C T 

Software Defined Networking (SDN) is a new network technology that tries to overcome the 

shortcomings and problems in traditional networks. By centralizing the network state in control 

layer, SDN architecture makes it easier to define and enforce consistent policies across the 

network. By separating data plane from control plane, dynamic requirements of complex 
networks can be easily manage through SDN. For future networks, SDN is already playing a 

significant role. SDN offers robustness, flexibility, vendor's independent platform and consistent 

policies across the network. In this article, we analyze different Input-Output (IO) buffering 
strategies which effect flow control blocking in SDN. We evaluate the performance of three 

different IO buffering strategies: single buffering, double buffering and ring buffering. Analyses 

of three IO buffering strategies are carried out in terms of two network parameters: latency and 
packet delivery ratio (PDR). Our results show that in terms of latency, ring buffering performs 

much better than single and double buffering for varying number of hosts and switches in a 

network. Furthermore, PDR is significantly minimized by use of buffers during network 
congestion in SDN. 

 

 

1. Introduction 

Emerging trends in mobile, social networks, cloud 

computing and big data have given new challenges to 

future Internet, for which ubiquitous accessibility, high 

bandwidth and dynamic management are crucial [1]. In 

conventional computer networks, the data plane and 

control plane operate together over the same channel for 

transmission process. In such networks, control 

information and user data is sent over the same channel 

and it is difficult to maintain data and information on 

same channel. Furthermore, various problems arise such 

as bad signaling, reset phone trunk lines, inefficient 

network control, network maintenance and up-gradation 

[2]. Conventional networks do not meet the current 

requirements of end users and faces a-lot of challenges in 

configuration of network devices, adding new 

functionality and controlling the network behavior from a 

single point. In order to mitigate flexibility problems, 

researchers have invested an initiative that implements 

networks with greater programming capabilities and 

reduce the need to replace switching equipment [3]. These 

requirements lead to the development of new paradigm in 

networking known as Software Defined Networking 

(SDN). 

SDN [4] is an evolving network structural design 

which allows network applications to be controlled and 

maintained from a single software module called SDN 

controller [5]. SDN is changing the technique of how we 

plan, maintain and manage networks and is one of the 

most considerable network architecture that shifts the 

networking industry in past few years. SDN has a 

potential to meet the new network challenges from rising 

trends of cloud computing, Internet of things and big data 

applications. The goal of SDN is to introduce network 

innovations, automation and managing larger networks 

from a single entity. By separating the data plane from 

control plane and moving the control plane to a 

centralized controller, SDN offers network operators a 

strong capability to deploy a wide-range of network 

policies (such as routing, fault-tolerance and security) 

along with the ability to implement new network 

technologies [6]. Additionally, the network administration 

is much more focused in terms of applications and 

services rather than topologies and data management. 

More recently, the development of Ethane [7] and 

OpenFlow [8] have brought the implementation of SDN 

closer to reality. 
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OpenFlow is an open standard protocol that provides 

researchers to deploy and run new protocols in SDN. 

OpenFlow is the first standard interface and a secure 

channel through which we can interact with different 

layers in SDN [8]. Network devices such as routers and 

switches could be accessed through OpenFlow. Several 

recent papers have studied particular compositional parts 

of SDN [9]. OpenFlow allows us to perform operations 

such as inspecting and modifying flow table entries on 

network devices. The OpenFlow protocol is used as a key 

and standard protocol in SDN to interact with the 

forwarding plane of network devices. The Openflow 

specification [11] builds up the rules of communication 

between a controller and data plane. The Open 

Networking Foundation (ONF) [12] brings together about 

90 companies and is dedicated to releasing, promoting 

and adoption of OpenFlow specification. Standardization 

may advance more through new open source associations 

OpenDaylight [13] and Estinet [14] projects. 

Though, numerous surveys and theoretical literature 

exists to date [1, 10, 15, 16] which highlights various 

concepts of SDN. Furthermore, in recent years, the 

performance of SDN with different parameters and 

scenarios is evaluated in [3, 17-20]. However, still it is 

not clear which are the different Input Output (IO) 

buffering strategies that can identify blocking flows, 

which help in minimizing the flow control blocking in 

SDN. Flow control blocking and congestion control 

minimization is essential in both traditional and SDN 

networks in order to achieve high throughput and 

minimum packet loss. In SDN, controller is used to 

manage network flow control. SDN controllers used 

protocols such as OpenFlow for directing switches to 

where send packets. Buffer is a place which is shared by 

networking devices that are working at different speed. 

Buffer permits every networking device to work without 

being stalled by some other device in the network. 

Buffering strategies are used for many purposes, 

including: holding data temporarily in the network, 

sending/receiving data over the network, adaptive and 

video streaming over the Internet and reduce the impact 

of data rate variability during message rate spikes. 

Numerous factors play a vital role for effectiveness of 

buffer such as buffer's size and selection of algorithm for 

transmission of data. In this study, we looked at different 

buffering strategies and their effect on blocking in SDN. 

We have evaluated the performance of SDN by using 

three different IO buffering strategies (single buffering, 

double buffering and ring buffering), compare the results 

and identify a strategy that performs better in minimizing 

blocking flows in SDN. Performance of SDN under 

mentioned buffering strategies is evaluated in terms of 

latency and packet delivery ratio (PDR). 

Mininet [17] is used for simulation of IO buffering 

strategies in SDN along with different topologies. Mininet 

is an innovative process based network emulator for 

prototyping large networks, evaluating performance and 

bandwidth usage on a single computer or laptop. In 

Mininet, hosts, links, switch and SDN controllers look 

like a complete network and users can implement and test 

new network features or new architecture. Furthermore, 

same code and test scripts can be deployed in a real 

production network. We use Mininet python API 

programming language for making custom topologies and 

scripts. 

The rest of the article is organized as follows: Three 

IO buffering strategies and network parameters that we 

used for performance evaluation are discussed in Section 

2. Simulation experiments are performed in Section 3, 

where SDN performance is checked and discussed for 

different IO buffering strategies. Finally, we conclude the 

article and highlight future directions in Section 4. 

2. IO Buffering Strategies and Network 

Performance Measures 

In SDN, network can be managed and controlled 

quickly by using a centralized controller. The use of IO 

engine in SDN controller offers fast response time and 

higher flow setup rate than current SDN controllers. IO 

engine uses multi-queue design approach for getting high 

performance, which differentiates it from other SDN 

controller’s approach. IO engine is the best among current 

SDN controllers in processing core scalability issues [21]. 

Congestion in networks generally occurs when a host is 

receiving more data (packets) than it can handle [22]. 

Congestion can reduce overall quality of service and other 

effects of congestion include loss of packet during 

transmission, queuing delay and blocking of new 

connections. Main aim of congestion control is to keep 

the number of packets below a defined level at which 

network overall performance dramatically decreases [23]. 

One of the congestion control mechanism is to use buffers 

during network congestion. A buffer is used to 

temporarily store data during transmission. IO buffering 

strategies that are considered in this work are: 

 Single Buffering: In single buffering, we have used 

only one buffer to hold the packets during bottleneck 

so that latency and delay rates of transmitted packets 

could be minimized. The size of the buffer is equal to 

RTT × C where RTT is the round trip time of the 

packets transmitted over the connection and C is the 

data rate of the bottleneck link.  

 Double Buffering: In double buffering, we have 

used two system buffers instead of one. In this 

strategy, we double the size of buffer so that it can 

absorb more packets and delay rates of transmitted 

packets minimized.   

 Ring Buffering: In this technique, more than two 

buffers have been used. Each individual buffer is one 
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unit in a circular buffer. The block diagram for ring 

buffering is shown in Fig. 1, where incoming 

data/packet is stored before the output. Generally, 

data is stored in the buffer when it is retrieved from 

an input device or when data is sent to an output 

device.Ring buffering works on the basis of first-in-

first-out (FIFO) method, where the oldest (first) 

packet in the buffer is processed first.  

 

Fig. 1:   Working of ring buffering 

We have used latency and PDR as two network 

parameters for performance comparison of above 

mentioned strategies in SDN.  

 Latency: Bandwidth and latency are the two key 

elements that contribute to network speed. Latency 

has enormous effect on the system speed. Systems 

associated with low latency are the one which 

encounters little delay, while a high inactivity 

association experiences long postpones. Actual 

network bandwidth generally varies over time and is 

affected by high latencies. Excessive latency 

introduces bottlenecks that will stop data from filling 

the network pipe, thus bandwidth is decreased. 

Impact of latency on network bandwidth depends on 

the delays source and this impact can be temporary 

(that lasts for few seconds) or it can be persistent 

[24]. 

 Packet Delivery Ratio (PDR):The ratio of delivery 

of packets from the point of start to the destination is 

called PDR. In other words, to what extent data is 

delivered to the destination. This ratio can also be 

determined by the ratio of successfully delivered 

packets to destination vs. the number of packets 

which were sent [25]. 

3. Simulations and Results 

We used Mininet for simulation and performance 

measurement. Table 1enlists the basic network simulation 

parameters. Multiple scenarios consisting of varying 

numbers of node and switch are considered that are 

discussed shortly. However, the traffic generated by each 

node was at least 10pps. Furthermore, the distance 

between each switch varies, so that physical layout and 

distance can also be considered for latency. Each 

simulation run is of 100 seconds, link bandwidth is 10 

MBps and buffer size is RTT × C. 

Table 1:    Simulation parameters 

Parameters Value 

Packet size 64KB 

Switches Fn = 2n 

Traffic Rate 10-100 pps 

Simulation Time 100s each case 

Link Bandwidth 10 MBps 

Buffer Size RTT × C 

No of Hosts Fn = 6(n) 

Initially, a network in Mininet was established using 1 

switch where six clients are attached with it: H1, H2, H3, 

H3, H4, H5 and H6. We gradually increased the number 

of switches and hosts in order to track out the latency and 

delay rates during the packet transmission with three IO 

buffering strategy. We have experienced different latency 

stats for packets with the interval of 5 seconds. We used 

IO buffers at control plane to identify blocking flows in 

order to minimize flow control blocking. Fig. 2 shows the 

latency and delay rate difference in a network having one 

switch and six hosts. In ring buffering technique, latency 

time for packets are minimized significantly and having 

less certain rises as compared to single and double 

buffering approaches. 

 

Fig. 2: Latency variations of six hosts and one switch network 

We progressively expanded the number of hosts and 

switches to track out latency during packet transmission. 

Fig. 3 shows the latency for 2, 4 and 8 switches 

respectively. For network with more than one switches, 

the results shows certain rise which may be an outcome in 

queuing of the packets that are of longer distance across 

the networks. Similarly, latency time of delivered packets 

significantly improves in ring buffering technique with 

increase in the total number of switches and hosts. 
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Fig. 3: Calculated latency variations in networks for (a) 2 hosts and 

2 switches network, (b) 16 hosts and 4 switches network and 

(c) 16 hosts and 8 switches network 

For 4 switches, ring buffering technique 

performance improved 30% with respect to the other 

techniques, whereas, ring buffering technique shows 50% 

improved performance for 8 switches network. We can 

say that performance of ring buffering technique 

improves for complex network structure. Furthermore, 

evaluation of three buffering techniques with 1 switch 

performs quiet similarly. However, periodically the result 

shows certain rise which may be a result in queuing of the 

packets in single and double buffering approaches.  

We also compared three buffering techniques for 

latency in each strategy as shown in Table 2 and Fig. 4. 

Average latency time in single, double and ring buffering 

strategies for varying number of switches is listed in 

Table 2. As the network become more complicated and 

dense, average latency time in each buffering strategies 

increases. 

Table 2:    Comprehensive comparison of three buffering techniques 

Network 
Topology 

Avg. Latency 
in Single 

Buffering 

Avg. Latency 
in Double 

Buffering 

Avg. Latency 
in Ring 

Buffering 

1 Switch 11.86 ms 8.52 ms 5.42 ms 

2 Switch 20.87 ms 12.23 ms 6.45 ms 

4 Switch 32.08 ms 19.24 ms 10.33 ms 

8 Switch 55.09 ms 42.17 ms 21.55 ms 

A packet travels multiple hops in the network to 

reach its destination. At each hop, intermediate device or 

switch process the packet in order to move the packet 

forward. Hence, packet processing delay and drop of 

packets may be encountered on the network depending 

upon the traffic sources, packet size and queue, etc. The 

effect of multiple switches for each buffering strategy is 

shown in Fig. 4. Furthermore, Fig. 4 illustrates that 

latency increases with increase in number of switches in 

SDN network. In single buffering (Fig. 4a), latency for 1 

and 2 switches is low at packet 70. Latency in single 

buffer for packet number 70 and 90 is also low for 8 

switches. In addition, there is not much variation in 

latency for single buffering in multiple switches. Latency 

variation for double bufferingand ring buffering is shown 

in Fig. 4b and Fig. 4c respectively. In Fig. 4b, low latency 

is encountered for 1 switch at packet number 50, 70, 90 

and 100. At packet 50 and 90, low latency is encountered 

for 2 switches and low latency is encountered for 4 

switches at the end of the packet transmission in the 

network. Similarly, in ring buffering, low latency is 

encountered for 2 switches at the start of transmission and 

at packet 50. For 8 switches, low latency is encountered at 

network initialization time and in the middle of 

transmission. 

Generally, network traffic is inherently bursty and 

as a result, all network switches have buffer queues that 

absorb additional packets that arrive during traffic bursts. 

The buffers then drain during traffic congestion, keeping 

average utilization of outgoing links high and causing 

lower packet drops. We used buffer so that packet drop 

ratio could be minimized in case of congestion. First, we 

calculated PDR without using buffer and send 50 packets 

in total during a simulation run of 100 seconds.  Out of 50 

packets, 23 packets were dropped and PDR is calculated 

with following formula: 

       PDR= 
# of  packet  received

# of  packet  sent
         (1) 

PDR = 27/50 = 0.54 in case of using no buffer. 

Now with the same scenario, we attached a single 

buffer and checked PDR. In single IO buffering strategy, 

11 packets were dropped. PDR for single buffering 

strategy is also calculated from formula 1. PDR = 39/50 = 

0.78. In order to increase the PDR, we have used double 
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buffering strategy. So that maximum number of packets 

absorbed by the buffers and packer dropped ratio could 

be minimized. In total, 8 out of 50 packets were dropped 

with double buffering strategy. For double buffering 

strategy, PDR =42/50 = 0.84. For ring buffering strategy, 

2 packets were dropped and calculated PDR = 48/50 = 

0.96.  
 

 

 

 

Fig. 4: Varying switch latency for (a) single buffering, (b) double 

buffering, and (c) ring buffering 

In terms of PDR, ring IO buffering strategy shows 

almost 20% better performance than single IO buffering 

strategy and 12% better performance than double IO 

buffering strategy. 
 

4. Conclusion 

Legacy networks are troublesome and difficult to 

control. On the other hand, SDN truly made networks 

simpler and easy to control. SDN is now most utilized 

methodology as a part of systems administration. In this 

article, we studied the performance of different IO 

buffering techniques to minimize blocking in SDN during 

heavy network traffic. We analyzed three buffering 

techniques i.e. single buffering, double buffering and ring 

buffering at control plane. We used different test cases in 

Mininet for performance comparison of IO buffering 

strategies. Our results showed that ring buffering 

technique outperformed both single and double buffering 

strategies. We also found that the use of buffers is very 

helpful during congestion in SDN and packet drop ratio in 

case of congestion could be significantly minimized by 

the use of buffers in SDN. Calculated PDR for single and 

double buffering strategy is 78% and 84% respectively. In 

ring buffering technique, we got much better results and 

approximately 96% packets successfully delivered to their 

destination hosts. 

One interesting area for future is to compare the 

performance of IO buffering strategies in other SDN 

emulators such as EstiNet and OpenDaylight. Other 

interesting area would be the development of high-

performance IO engine that offers fast response time and 

higher flow setup rate than state-of-the-art SDN 

controllers. 
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