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A B S T R A C T 

The position of the Sun as seen by an observer on the Earth’s surface and the position and velocity vectors of the Earth revolving in an elliptical orbit around 

the Sun can be calculated using several computational approaches. These approaches include (but are not limited to) the use of an analytical approach; a 

numerical approach, and the use of a Solar Position Algorithm (PSA). In the analytical methodology, the Earth’s momentum equation is transformed to 
eliminate its time dependence, and the equation is solved analytically. Whereas, using the numerical approach, the dimensionless momentum equation of the 

revolving Earth is written in the polar coordinate system (r, θ) and solved numerically. The solar position algorithm known as PSA (Plataforma Solar de 

Almeria, abbreviated from its Spanish origin: https://www.psa.es), is a numerical algorithm that uses several empirical relations to calculate the solar 
declination and the ecliptic longitude angles, etc. The algorithm uses Cartesian coordinate system to calculate the dimensionless coordinates of the pole star 

(Polaris) and its declination angle to calculate the position vector of an observer that rotates with the Earth. This coordinate system is referred to as a new 

Cartesian coordinate system whose origin is located at the center of the Earth. The solar elevation angle and azimuth angle are obtained by performing a set 
of rotations of this new Cartesian coordinate system. In this article, we have used basic physical principles (analytical approach) to obtain the main 

parameters of the Sun’s trajectory and position, at certain time in the sky. The methodology presented here can easily be used by professionals and engineers 

working in the area of solar/alternate energy, as well as for the design of intelligent/green buildings/cities for a sustainable environment. 

Keywords: Position of Sun; Solar Trajectory; PSA; Declination Angle; Orbit of Earth 
 

1. Introduction 

The variation in the position of the Sun in the sky over an 

observer is a natural phenomenon that has intrigued 

humankind forever. The position of the Sun has been 

correlated with the occurrence of natural phenomena 

(volcanic activity, storm cycles, and earthquakes). The motion 

of the Sun has also been considered as a measure of time, or 

as a phenomenon that governs the agricultural cycles and 

diseases. Since the 20th century, the accurate determination of 

the Sun’s position has been an important subject of study for 

engineers. Due to the increasing price of petroleum, the effect 

of greenhouse gases on climate change and global warming, 

and the increasing number of internal combustion engines in 

big cities, it is necessary that engineers develop alternative 

energy sources. Engineers need to efficiently extract energy 

from renewable and free sources, such as the Sun. Energy 

engineers need to design efficient solar furnaces, solar steam 

generators, solar water heaters, solar cells, etc. If civil 

engineers efficiently use solar energy, they may design 

reliable intelligent buildings and sustainable environments. In 

the near future, the task of the engineers will be very 

important. However, sometimes they do not have enough 

background to understand the mathematical notations that the 

physicists and astronomers use to calculate the Sun’s position. 

In view of the above, we have made a literature review and 

explained the methodology, here. 

The determination of the Sun’s position in the sky by using 

vector analysis techniques has been previously reported by [1] 

and [2]. A simple parametric model, that describes the basic 

principles of the visible Sun’s path on the celestial sphere, has 

been presented by [3]. A review of the Sun’s position 

algorithms that were published in the solar literature is presented 

by [4]. The Sun position algorithms are sophisticated 

schemes, that compute the position of the Sun in the ecliptic, 

celestial, and horizontal coordinates, see [5]. Very recently, a 

review of the Sun position algorithms has been presented in 

[6]. On the internet sites, it is also possible to find and execute 

computer codes to calculate the position of the Sun in the sky, 

for instance [7]. The purpose of this paper is to present a self-

contained material suitable for energy and civil 

engineers/researchers to determine the solar position in the 

sky.  

The paper is organized as follows. In section 2, the Earth’s 

orbit equation is presented. In section 3, the methodology to 

obtain the Cartesian coordinates of the star Polaris and the 

calculation of the declination angle, are presented. In section 

4, a Cartesian coordinate system, whose origin is located at 

the center of the Earth, is introduced to define both the 

position vector of an observer and the position vector of the 

Sun. Employing a set of rotations, the solar elevation angle 

and the solar azimuth angle measured from the north are 

calculated. Discussion on results and Conclusions are 

presented in sections 5 and 6, respectively. 

2. Earth’s orbit equation 

In the mathematical model of the Earth’s orbit equation, it is 

assumed that the Earth is being attracted to a fixed attracting focus 

(the Sun). The motion is confined to the ecliptic plane, which is 

described by the radius vector (from the Sun to the Earth) and the 

velocity vector of the Earth. Using a polar coordinate system r - θ, 

where r (the radial coordinate) is measured from a fixed focus (the 

Sun) and θ (the angular coordinate) is measured from a fixed 

reference line (the line traced from the Sun to the Earth at the 

Perihelion position), see Fig. 1. 
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Fig. 1. Polar r - θ coordinate system. The letters S and E correspond to the 

Sun and the Earth positions, respectively. a and c represent the major 

axis and the focus of the elliptical trajectory of the Earth around the 
Sun, respectively. The Earth’s Perihelion position (θ=0o) and the 

Earth’s Aphelion position (θ=180o) are also shown. 

The radial and angular components of the momentum 

equation of the Earth (in terms of force and acceleration) are 

written as (in the model it is assumed that the only force acting 

on the Earth is in the negative radial direction). 

Radial component 

If we assume that the motion of the Earth relative to the 

Sun, is the same as if the Sun is fixed and the mass of the Earth 

is replaced by the reduced mass M′E , which is defined as 

𝑀𝐸
′ =  

𝑀𝐸𝑀𝑆

𝑀𝐸+𝑀𝑆
          (1) 

where MS is the mass of the Sun and ME is the mass of the 

Earth and the gravitational force in the radial direction 

(attracting force) is balanced by the centripetal force, we get 

(G is the gravitational constant): 

𝑟̈ − 𝑟𝜃̇2 =  − 
 𝐺 (𝑀𝐸 + 𝑀𝑆)

𝑟2                (2) 

or 

𝑟̈ − 𝑟𝜃̇2 =  −
𝜇

𝑟2                (3) 

Where μ is the gravitational coefficient (positive constant) 

given as: μ = G (ME +MS). Please note dot (.) represents a time 

derivative and r and θ are shown in Fig.1. 

Angular component 

Considering that angular momentum is zero, the angular 

momentum component per unit mass h, is independent of time 

and is defined as: 

ℎ =  𝑟2𝜃̇      (4a) 

or (squaring both sides and rearranging) 

𝜃̇2 =  
ℎ2

𝑟4       (4b) 

The principle of conservation of angular momentum states 

that the moment of the total external force applied to the Earth 

is equal to the time rate of change of the angular momentum 

of the Earth about the Sun. If the external moment is equal to 

zero, the angular momentum h must be a constant. 

Substituting Eq. (4b) into Eq. (3), we obtain  

𝑟̈ − 𝑟
ℎ2

𝑟4 = −
𝜇

𝑟2                (5) 

or 

𝑑2𝑟

𝑑𝑡2 =
1

𝑟2 (
ℎ2

𝑟
− 𝜇)                (6) 

2.1 Solution of the Earth’s orbit equation: A numerical 

approach 

Using the non-dimensional variables r* = r/a (where a is 

the semi-major axis of the Earth’s elliptical orbit) and t* = 

tμ/(ah), the dimensionless radial component of the momentum 

equation is written as 

𝑑2𝑟∗

𝑑𝑡∗2 = (
ℎ4

𝑎2𝜇2𝑟∗3 −
ℎ2

𝑎𝜇𝑟∗2)                       (7) 

For the numerical solution of Eq. (7), we have considered 

the following values (which are available in the literature) of 

the Earth trajectory: (i) the semi-major axis a = 150 × 109 m, 

(ii) the angular momentum per unit mass h = 4,452,990,073 

km2/s [8] and (iii) the gravitational coefficient μ is obtained 

by employing the values of G = 6.673x10−11 m3/(kg s2), ME = 

5.972 x 1024 kg and MS = 2 x 1030 kg, as μ = G (ME +MS) = 

132,774,392,455,423,200,000.0 m3 / s2. 

By substituting these values in Eq. (7), we have 

𝑑2𝑟∗

𝑑𝑡∗2 =
0.999442337

𝑟∗3 −
0.99972113

𝑟∗2                    (8) 

This second-order ordinary differential equation is solved 

by using a Runge-Kutta-Nystrom technique (D02LAF-NAG) 

and taking into account the following initial conditions: (i) at 

t*=0 the Earth’s radial velocity is zero, that is, dr*/dt* = 𝑟̇* = 

0 and (ii) at t*=0, the Earth is at the Perihelion position i.e.  

= 0o. The numerical solution is performed along the whole 

year (365 days), by considering 525,600 time steps, which 

corresponds to a dimensionless time increment t*=1.19023 

x 10−5, which is equivalent to a dimensional time increment 

t=60s. By solving Eq. (8), we obtain, as a function of time 

t*, the dimensionless radial position (r*) and the 

dimensionless radial component of the velocity vector 

(dr*/dt* = 𝑟̇*). The dimensional tangential velocity of the 

Earth (vt = r𝜃̇), which is called the orbital speed, is obtained 

from Eq. (4a), which says vt = r𝜃̇ = h/r. 

The angle  around the Sun is calculated from the 

equation of an ellipse, which in polar coordinates seems as: 

𝑟 =
𝑎(1−𝜀2)

1+𝜀 cos 𝜃
=

𝑙

1+𝜀 cos 𝜃
                      (9) 

Where,  is the eccentricity of the Earth’s orbit, currently 

 ≈ 0.0167005 and l is the semi-latus rectum defined as l = a 

(1−2) = 149,958,163,991.09 m. The dimensionless version of 

Eq. (9) is 

𝑟∗ =
(1−𝜀2)

1+𝜀 cos 𝜃
=

𝑙∗

1+𝜀 cos 𝜃
                       (10) 

where l* = (1−2) = 0.9997210932. Hence the angle  is 

obtained by rearranging the above equation, as: 

𝜃 = cos−1(
𝑙∗−𝑟∗

𝑟∗𝜀
)            (11) 
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From Eq. (11) it is clear that when =0o (defined as the 

Perihelion position, around January 3rd), the Earth is closest 

to the Sun, at a dimensional radial distance r equal to rp, as: 

𝑟𝑝 = 𝑎(1 − 𝜀) ≈ 147.5 × 106 km   (12) 

while when =180o (defined as the Aphelion position, 

around July 4th), the Earth is farthest from the Sun, at a 

dimensional radial distance, r equal to rA, as: 

𝑟𝐴 = 𝑎(1 + 𝜀) ≈ 152.5 × 106 km  (13) 

Then, the dimensionless polar coordinates at the 

Perihelion r*P and Aphelion r*A positions (from Eq. 10) are 

𝑟P
∗ = (1−) = 0.9833 and 𝑟A

∗= (1+) = 1.0167, respectively. 

From the numerical solution of Eq. (8), we obtain 𝑟Pn
∗ =0.9833 

(when =0o), 𝑟An
∗ =1.016699 (when =180o) and 𝑙𝑛

∗ =0.999721, 

where, the subscript n refers to the use of the numerical 

approach. 

2.2 Solution of the Earth’s orbit equation: An analytical 

approach 

If the above equations are reformulated to eliminate time 

dependence, the time derivatives of the radial distance, r are 

eliminated, and after applying considerable mathematics (for 

further details of the procedure please contact the 

corresponding author) and the use of available data for μ, h 

and a, the dimensionless Earth’s elliptical orbit equation is 

obtained as: 

𝑟∗ =
𝑟

𝑎
 

= 0.99972109732795145 / (1+0.016700379398341621 cos 𝜃) (14) 

If Kepler’s second law of planetary motion that states “the 

radius vector from planet to Sun, sweeps equal areas in equal 

times as the planet orbits the Sun”, we obtain an expression 

that relates the Earth’s angle  around the Sun to the elapsed 

time since  = 0 radians (that is, angle from the Earth’s 

perihelion position). If the small element of the area in the 

elliptical Earth’s orbit consists of a small isosceles triangle 

whose sides have length r and whose base length is rd. The 

small area is given as: 

𝑑𝐴 =
1

2
𝑟2𝑑𝜃           (15) 

In a short time dt the Earth has the constant areal velocity, 

given by: 

𝑑𝐴

𝑑𝑡
=

1

2
𝑟2 𝑑𝜃

𝑑𝑡
          (16) 

After applying a considerable mathematics, using Eq. (3) 

and the principle of conservation of angular momentum, we 

obtain: 

𝑑𝐴 =
1

2
[

(1+𝜀)2𝑟𝑝
2

(1+𝜀 cos 𝜃)2] 𝑑𝜃             (17) 

and,  

1

2
[

(1+𝜀)2𝑟𝑝
2

(1+𝜀 cos 𝜃)2] 𝑑𝜃 =
1

2
ℎ𝑑𝑡              (18) 

which can be rewritten (after performing the integration 

over time) as: 

𝑡 =
(1+𝜀)2𝑟𝑝

2

ℎ
 ∫

𝑑𝜃

(1+𝜀 cos 𝜃)2

2𝜋

0
                     (19) 

The dimensional analytical solution of Eq. (19) is 

𝑡 =
(1+𝜀)2𝑟𝑝

2

ℎ
[

2

√1−𝜀2
tan−1(

√1−𝜀2

1+𝜀
tan (

𝜃

2
)) −

𝜀 sin 𝜃

1+𝜀 cos 𝜃
] (20) 

where the dimensional time, t, is in seconds. In the 

derivation of the above equations, the values for 

h=4,456,990,073,000,000 m2/s and a=149,597,885,651 m, 

have been used. The dimensionless expression for the time t* 

is given as: 

𝑡∗ = (
𝜇

𝑎ℎ
)

(1+𝜀)2𝑟2
𝑝

ℎ
[

2

√1−𝜀2
tan−1(

√1−𝜀2

1+𝜀
tan (

𝜃

2
)) −

𝜀 sin 𝜃

1+𝜀 cos 𝜃
]  (21) 

From Eqs. (14) and (21), the values of r* and t* 

respectively, are calculated for a set of  angles in the interval 

0 ≤ 𝜃 ≤ 2𝜋. 

2.3 Solar position algorithm (PSA) 

The Sun’s position algorithm, namely, “Plataforma Solar 

de Almeria” (PSA algorithm - abbreviated from its Spanish 

origin: https://www.psa.es) developed by [4] is a numerical 

algorithm used to calculate, as a function of time (specified by 

the Julian day, the calendar date and the universal time), the 

Sun position parameters, such as the ecliptic longitude angle 

𝜃̂ (which is related with the polar coordinate, , see the 

previous sections) and the declination angle, β, among others. 

Following [4] the difference n, between the current Julian day 

(jd) and Julian day 2,451,545 (which corresponds to the day 

starting at 12:00 UT on January 1, 2000) is given by: 

𝑛 = 𝑗𝑑 − 2451545   (22) 

Where, the current Julian day is obtained from: 

𝑗𝑑 =
1461 ∗ (𝑦𝑒𝑎𝑟 + 4800 + 𝑗𝑚1412)

4
+ 

367 ∗ (𝑚𝑜𝑛𝑡ℎ − 2 − 12 ∗ 𝑗𝑚1412)

12
− 

(
3 ∗ (𝑦𝑒𝑎𝑟 + 4900 + 𝑗𝑚1412)

100 ∗ 4
) + 

𝑑𝑎𝑦 − 32075 − 0.5 +
ℎ𝑜̂𝑢𝑟

24
                     (23) 

Where, the parameter hôur includes the hour of the day 

(hour) in Universal Time and in decimal format (that is, the 

minutes and seconds as a fraction of an hour are also 

included), then 

ℎ𝑜̂𝑢𝑟 = ℎ𝑜𝑢𝑟 + [𝑚𝑖𝑛𝑢𝑡𝑒𝑠 +
𝑠𝑒𝑐𝑜𝑛𝑑𝑠

60
] /60          (24) 

And, jm1412 = (month-14)/12. All divisions except the 

last one are integer divisions, see [4]. The ecliptic coordinates 

(the coordinates evaluated on the ecliptic plane) are computed 

for the required Julian day. 



B. Fareed et al. / The Nucleus 61, No. 1 (2024) 10-15 

3. Location of the star Polaris (North Star) and the 

declination angle 

To calculate the position of the Sun in the sky of an 

observer, we direct the Earth’s rotation axis to the star Polaris. 

The coordinates of the North star are defined in a Cartesian 

coordinate system whose origin is located at the center of the 

Earth’s elliptical orbit and whose plane x1-x2 defines the 

ecliptic plane, see Fig. 2. Where the subscript E, refers to the 

Earth; N to the North Star and S refers to the position of Sun. 

We have assumed (considering that the North Star is far 

away from the Sun-Earth system) that the angle between the 

 

Fig. 2.  Cartesian coordinate system, whose origin is located at the center of 

the Earth’s elliptical orbit. In the figure positions of the Sun, Earth 

and the North Star (Polaris) are shown. Also shown is the angle 
(66.5477o) between the position vector of Polaris and the ecliptic 

plane (plane x1−x2 of the Cartesian coordinate system). 

rotation axis of the Earth to the position vector of the North 

Star is the same as that of its position vector with the ecliptic 

plane (also see Fig. 3, below). 

 

Fig. 3. The angle , between the Earth’s rotation vector and the vector from 
the Earth to the Sun. 

The angle , between the Earth’s rotation vector 𝑥𝐸−𝑁
∗  and 

the vector from the Earth to the Sun 𝑥𝐸−𝑆
∗  = 𝑥𝑆

∗ – 𝑥𝐸
∗ , is 

obtained as (see also Fig. 4, below). Its components are: 

𝑥1𝐸−𝑆
∗ = −𝑟∗𝑐𝑜𝑠𝜃,   𝑥2𝐸−𝑆

∗ = −𝑟∗𝑠𝑖𝑛𝜃,   𝑥3𝐸−𝑆
∗ = 0  (25) 

   

𝛾(𝑡) = cos−1 (
𝑥𝐸−𝑆 .  

∗ 𝑥𝐸−𝑁
∗

|𝑥𝐸−𝑆
∗ ||𝑥𝐸−𝑁

∗ |
)                       (26) 

The declination angle β (t) between the Earth’s equator 

and the vector from the Earth to the Sun 𝑥𝐸−𝑆
∗  is given as (see 

Fig. 4, below). 

𝛽(𝑡) = 90𝜊 − 𝛾(𝑡)       (27) 

 

Fig. 4. The declination angle β between the Earth’s equator and the vector 

from the Earth to the Sun 𝑥𝐸−𝑆
∗ . 

By performing a trial and error procedure, the North Star 

is calculated to be at the dimensionless coordinates 𝑥1𝑁
∗ = 4 ∗ 109 

and 𝑥2𝑁
∗ = −1 ∗ 109  

The third component of the position vector of the North 

Star is calculated as: 

𝑥3𝑁
∗ = ( 𝑥1𝑁

∗2 + 𝑥2𝑁
∗2 )

1

2 tan(𝜙) = 9.5 ∗ 109 (28) 

The convergence criteria of the trial and error process are 

based on the successful evaluation of the dates at which the 

equinoxes and solstices occur.  

Fig. 5 shows the declination angle β and the ecliptic 

longitude 𝜃̂ as functions of the days along the year. In the 

numerical solution (left panel), β is calculated from Fig. 4, 

while  is calculated from Eq. (11) (and converted to the 

ecliptic longitude 𝜃̂). In the analytical solution (middle panel), 

 is the independent variable of Eq. (20) (and it is converted 

to the ecliptic longitude 𝜃̂). In the Sun position algorithm 

(right panel), PSA is used to calculate 𝜃̂. The calculations have 

been made for the year 2013. Note that for the three 

approaches, at the equinoxes, the declination angle β is equal 

to zero hence at the Earth’s equator a vertical zenith is 

reached. While at the summer and winter solstices, the vector 

𝑥𝐸−𝑆
∗  passes through the Tropic of Cancer (i.e. β = 23.45o) and 

Tropic of Capricorn (i.e. β = - 23.45o) respectively.  

The dimensionless tangential velocity (orbital speed) of 

the Earth that is calculated by the numerical and analytical 

algorithms is depicted in Fig. 6. 

4. The position vector of an observer on Earth and the 

Earth’s rotation 

In order to consider the two motions of the Earth: (i) 

rotation about its axis that points towards the North star and 

(ii) the elliptical trajectory around the Sun, a new fixed 

Cartesian coordinate system (o, x̂1, x̂2, x̂3) is defined, see Fig.7. 
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Fig. 5. The declination angle β (*) and the ecliptic longitude 𝜃 (◦) as functions of time (days along the year). Left panel: Numerical solution, β is calculated 

from Fig. (4), while  is calculated from Eq. (11) (and converted to the ecliptic longitude 𝜃 ). Middle panel: Analytical solution:  is the independent 

variable of Eq. (20) (and it is converted to the ecliptic longitude 𝜃 ). Right panel: Sun position algorithm (PSA) is used to calculate 𝜃 . 

 

Fig. 6. Dimensionless tangential velocity (orbital speed) of the Earth, v*t = (vt − vtmin)/(vtmax− vtmin) as a function of time (days along the year). The dimensional 

tangential velocity is calculated from Eq. (4), as vt = r𝜃̇). Left panel: Numerical solution, r (which is the dimensional value of r*) is calculated from 

Eq. (8) (vtmax = 30252.76 m/s and vtmin= 29258.89 m/s). right panel: Analytical solution, r (which is the dimensional value of the variable r* = r/a, 

where a is the semi-major axis of the Earth’s elliptical orbit) is calculated from Eq. (14) (vtmax= 30299.14 m/s and vtmin= 29303.75 m/s).

 

 

Fig.7. Cartesian coordinate system o, x̂1, x̂2, x̂3 whose origin is located at the center of the Earth. Its x̂3 axis points towards the star Polaris and its plane x̂1 - 

x̂2  is on the Earth’s equatorial plane. Left panel shows that the position vector of the Sun x̂∗Sun(t∗) moves on the plane x̂1 - x̂3. Right panel shows the 

position vector of an observer x̂obs(t∗), that is located at a certain fixed latitude  on the Earth’s surface and the rotation angle . 
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 It may be noted that t∗ = 0 at  = 0

This coordinate system has the following characteristics: (i) 

its origin is located at the center of the Earth, (ii) its plane x̂1 - 

x̂2 is on the Earth’s equatorial plane, (iii) the position vector 

of the Sun moves on the plane x̂1 - x̂3, (iv) its x̂3 axis points 

towards the star Polaris and (v) the orientation of its x̂1 axis is 

defined together with the initial value (at t∗ = 0) of the rotation 

angle , we have assumed that at t∗ = 0,  = 0 radian. In this 

new Cartesian coordinate system, we define two vectors, the 

vector x̂obs (t∗), which is the position vector of an observer that 

is located at a certain fixed latitude  on the Earth’s surface, 

and the vector 𝑥̂𝑠𝑢𝑛
∗ (𝑡∗), which is the Sun’s position vector. 

Notice that the vector x̂obs (t∗) rotates at the same angular 

velocity as the Earth, see right panel of Fig. 7. In the model, it 

is assumed that the Earth’s rotation angle  is 0 ≤ ρ ≤ 2, 

where 2 radian, corresponds to 1 day (24 hours or 86400 

seconds). The increment of the rotation angle  (which 

corresponds to the time step t=60 s of the numerical 

solution) is calculated as: 

Δ𝜌 =
2𝜋∗60

24∗3600
= 0.00436 𝑟𝑎𝑑𝑖𝑎𝑛𝑠         (29) 

The dimensionless three components of the rotating vector 

𝑥̂𝑜𝑏𝑠
∗ (𝑡∗) referred to as the fixed Cartesian coordinate system 

are given as: 

𝑥̂1𝑜𝑏𝑠
∗ (𝑡∗) = cos 𝛿 cos 𝜌(𝑡∗),  

𝑥̂2𝑜𝑏𝑠
∗ (𝑡∗) = cos 𝛿 sin 𝜌(𝑡∗) , 𝑥̂3𝑜𝑏𝑠

∗ (𝑡∗) = sin 𝛿           (30) 

while the dimensionless three components of the Sun’s 

position vector 𝑥̂1𝑠𝑢𝑛
∗ (𝑡∗), which oscillates from                      

(t*) = - 23.45o to  (t*) = 23.45o on the plane x̂1 - x̂3, are the 

following: 

𝑥̂1𝑠𝑢𝑛
∗ (𝑡∗) = 𝑐𝑜𝑠𝛽(𝑡∗), 𝑥̂2𝑠𝑢𝑛

∗ (𝑡∗) = 0, 𝑥̂3𝑠𝑢𝑛
∗ (𝑡∗) = 𝑠𝑖𝑛𝛽(𝑡∗) 

It may be noted that in Eq. (30), the dimensionless radius 

of the Earth is taken as equal to 1. 

5. Results and Discussion 

Some of the preliminary results obtained using these 

computational methodologies viz., the Numerical approach, 

Analytical approach, and the PSA are presented in Figures 5 

and 6. Fig. 5 shows the declination angle β and the ecliptic 

longitude 𝜃̂ as functions of the 365 days along the year 2013 

(chosen arbitrarily to demonstrate the methodology). Both the 

numerical and analytical solutions compare well with the PSA 

which demonstrates the suitability and validity of our 

computational methodology. It may be noted in Fig. 5, that at 

the time of equinoxes, the declination angle β is equal to zero 

hence at the Earth’s equator, a vertical zenith is reached. 

While at the summer and winter solstices, the vector 𝑥𝐸−𝑆
∗  

passes through the Tropic of Cancer (i.e. β = 23.45o) and 

Tropic of Capricorn (i.e. β= -23.45o), respectively.  

The tangential velocity (orbital speed) of the Earth is 

calculated by the numerical and analytical algorithms. It can 

be observed in the figure (see Fig. 6) that the dimensionless 

tangential velocity of Earth predicted by both the 

methodologies compare well, hence elaborating the success 

of our computations. 

6. Conclusions 

Diverse computational methodologies have been 

presented to calculate the trajectory of the Sun in the sky of 

an observer located on the Earth’s surface. A numerical 

algorithm and an analytical methodology have been used to 

get the parameters needed to obtain the Sun’s position in our 

sky. The location of the North Star has been calculated in a 

Cartesian coordinate system, which is a familiar coordinate 

system for engineers. Additionally, for the calculation of the 

location of the North Star, the position vector from the Earth 

to the Sun  and the declination angle as a function of time, 

were obtained for the use of the energy engineers. Standard 

transformations of the involved vectors (the position vector of 

the observer and the Sun’s position vector) have been 

obtained by performing simple rotations of the Cartesian 

coordinate system.  

The information included in this paper, although is a 

standard one, should be considered as an important source of 

reference, for solar energy engineers/civil engineers. For the 

construction of intelligent buildings for a sustainable 

environment, engineers may use this approach to accurately 

know the position of the Sun in the sky throughout the year.  
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