
 The Nucleus 58, No. 1-4 (2021) 1-8

www.thenucleuspak.org.pk

 1

The Nucleus

I S S N 0 0 2 9 - 5 6 9 8 (P r i n t)

I S S N 2 3 0 6 - 6 5 3 9 (O n l i n e)

Paki stan

The Nucleus

Analysis of Transmission Control Protocol Incast over Large-scale HPC Clusters

S. Khalid*, H.M. Abdullah, S.Z. Ahmad

Computational Intelligence Group, Management Information System Division (MISD), Islamabad, Pakistan

A B S T R A C T

The lifecycle of large-scale applications executing on High-Performance Computing (HPC) clusters involves massive use of transmission control protocol

(TCP) while performing orchestration for job completion on multiple compute resources. As the HPC clusters involve large local area network communication

for distributing jobs over compute and data nodes, the core network fabric in cluster architecture faces heavy workloads of TCP sessions; causing more than
average packet drop events. This results in the poor TCP throughput; thus reducing the overall performance indices of the cluster. In this article, we have

analyzed the TCP behavior at nominal, average, and heavy transmission load in a cluster environment for assessing various alternatives to solve the problem.

We have also analyzed the cumulative queuing behavior of multiple TCP sessions at the contention switch and used a fine-grained configuration at the network
fabric to improve the TCP performance. The simulation results show that the smaller set of data flow suffers a significant throughput collapse. The

performance of TCP variants tested indicates that the congestion control mechanism of these protocols plays a significant role in performance degradation

and needs a scalable solution to improve TCP performance indices. In this paper, different versions of TCP are employed for an HPC compute cluster and
data storage to cater to the TCP Incast problem and simple solutions are presented. It has been observed that none of the classical, as well as newer TCP

variants, perform consistently under heavy fan-in workload but a better queue management system at the network fabric greatly simplifies the problem and

improves the cluster performance.

Keywords: Data Transport Protocol, Congestion control, Network Fabric, TCP Incast, HPC clusters, Queue Management

1. Introduction

The transmission control protocol is responsible for 90%

of the internet traffic around the globe. It is a transport layer

network communication protocol in the Defecto TCP/IP

stack, designed to send data packets over the internet in

connection-oriented mode. TCP works in collaboration with

the Internet Protocol (IP) to establish connection-oriented

sessions between the sender and receiver. The IP defines the

logical locations of the sender and receiver, whereas the TCP

manages reliable data transport over then unreliable

connectionless networks through session management

between the sending and receiving sides. TCP ensures error-

free, end-to-end delivery of data between the sending and

receiving sides using the control-plane signaling that

performs session initiation, data transport, congestion control,

and session close operations over the internet infrastructure.

Before starting data transmission, TCP creates a connection

between the source and destination nodes and keeps it alive

until any of the sender or receiver sends a connection close

request to the other party. While the connection is alive, TCP

breaks large data into smaller packets and also ensures that

the data integrity is intact once it is reassembled at the

destination node.

Despite its phenomenal success on the internet, TCP has

shown some serious limitations in handling the data transport

in high-performance computing (HPC) clusters and data

center (DC) environments concerning throughput degradation

and poor transmission resource utilization. The prime reason

behind this performance degradation is the convergence of the

heavy inflow of TCP sessions at the network edge behind that

the HPC compute resources or data center storage systems are

operating. The phenomena are known as TCP Incast or fan-in

problem (while handling internal sessions; behind the

network edge) and TCP outcast or fan-out (while handling

sessions from outside the network edge). The very fast

resource depletion at the edge switch is attributed as the key

cause of the TCP incast and outcast problems that result in the

packet drops. The congestion control algorithm of most TCP

variants is highly sensitive about packet drop events during a

session.

TCP Incast or fan-in problem is described in the literature

as the collapse of throughput far below the link capacity that

occurs in many-to-one communication patterns. This happens

when a host places a request to multiple hosts for data

exchange. When multiple receivers get the request

simultaneously, all of them respond by sending multiple TCP

data streams to the host almost synchronously. This burst of

data may overflow the buffer of the host’s switch and causes

data packets to drop. TCP Incast problem especially affects

computing paradigms in which distributed processing cannot

progress until all parallel threads in a stage are completed. The

throughput collapse occurs mainly due to frequent timeouts

and full window loss. Full window loss occurs when there are

no feedback ACKs for the data packets sent and the whole

window of data packets is lost. In such a case, TCP does not

go into fast retransmission and fast recovery mode because

there are no acknowledgments to trigger those algorithms.

This is also called a full-loss timeout. Another scenario is

when there are not enough ACKs to trigger retransmission is

called lack-ACK timeout. In such a case, TCP can get stuck

in the slow-start phase due to timeouts and lack of enough

ACKs to trigger recovery mode. This majorly reduces the

throughput of the TCP as well as of the whole network as

reported previously [1].

The HPC clusters and data centers support a multitude of

services and applications that are based on transport

protocols; primarily the TCP. The data transport is used for

large-scale computing, storage, web searches, and

transactional systems. In clusters and associated storage

elements, many nodes send the request to a host
Corresponding author: khalidsadia92@gmail.com

mailto:khalidsadia92@gmail.comu

S. Khalid et al. / The Nucleus 58, No. 1-4 (2021) 1-8

2

simultaneously. Similarly in web searches or web-based

applications, a data query is sent to retrieve many data objects

simultaneously from different cloud data servers. Further, in the

MapReduce model, intermediate key-value pairs from many

mappers are sent to appropriate reducers [2]. In all inter-cluster

communications, the average round trip time in the inner nodes

of HPC is significantly less than that of a typical WAN and the

retransmission time out (RTO) value in such cases is in the

range of a few milliseconds.

In this paper, we have studied to find out exact contributors

to the TCP Incast problem in a cluster. For that purpose, we

have conducted a detailed analysis of major TCP variants under

moderate and severe congestion scenarios at the adjacent

network switch and recorded the impact under varying traffic

loads. We have then studied the queuing behavior of burst

arrival from multiple sessions through M/G/1 queuing model

for finding asymptotic behavior under adverse congestion

scenarios. It has been found that the buffering resource

constraint leads to a larger number of packets drop events that

cause lower performance metrics for TCP. We then propose a

modified queuing management system with an M/G/1/B model

at the edge switch to mitigate incast without modifying TCP

implementation.

2. Related Work

The ever-growing role of distributed computing and large-

scale data storage through computer clusters, data centers, and

cloud infrastructure has maintained the interest of researchers

in the area of efficient resource management. Data

communication resources are no exception with TCP playing a

pivotal role. A comprehensive review of major work to handle

TCP Incast and associated problems is presented by P.

Sreekumari et al. [3]. It covers major contributions in the

analysis and synthesis of the problem along with suggestions

proposed by the authors. The study thoroughly analyzes various

TCP parameters and algorithms that contribute to the adverse

performance of TCP in the many-to-one type of synchronous

transport sessions. The survey concludes that the contributing

factors in TCP performance degradation can be traced back to

the receiver’s window size, time-out value, and use of explicit

congestion notification (ECN). The survey provides a

comparative study of the currently existing transport protocols

to help readers understand the specific modifications required

for the implementation of major TCP variants. Wu et al. [4]

presented a solution with proactive adjustment of receiver

window to mitigate the TCP Incast problem. The proactive

adjustment of the receiver window may provide reasonably

good results in known behaviors of segment arrival, however;

in the case of diverse patterns of job distributions, the proactive

intelligence may not timely converge to properly adjust

receiver window size in real-time. Xu et al. [5] have also

proposed receiver-oriented congestion control to cater to the

TCP Incast problem. The authors have used oscillatory

behavior of queue size at the switch to generate ECN for

adjustment of receiver window accordingly. The approach is

simple and has a low processing overhead but requires

customized implementation of TCP.

Luo et al. [6] presented an analytical model to study the

TCP Incast problem. The model estimates probabilities of the

TCP Incast problem with respect to the number of sessions and

network environment. An optimization technique is used to

achieve the best possible throughput under constraints of the

above-mentioned parameters. Finally, they used a cross-layer

approach to improve the TCP Incast problem by configuring

TCP parameters at the application layer. The solution provides

better results in a very limited set of scenarios and lacks a

comprehensive system-wide approach. The convergence of

optimization overhead may also exceed the threshold for timely

control triggers.

In one of the more recent works by Xu et al [7], they have

exploited network virtualization and software-defined

networking (SDN) techniques to propose Retransmission

Timeout Avoidance by Packet Intelligent Discarding (RAPID)

to control fan-in at software switch. RAPID uses selectively

packet discard of each incast flow to force fast retransmit & fast

recovery algorithm rather than the invocation of RTO for each

packet loss epoch. They also proposed a low-complexity

heuristic version of RAPID named RAPID-early detection

(ED) that combines features of RAPID and early detection. The

proposed scheme though tries to solve the incast problem with

a simple approach but the selection criteria of packet drop is not

subtle. The fast retransmit may also result in overhead in case

of the short RTO values of a few milliseconds as found mostly

in local area networks (LANs).

Thiruvenkatam and Mukeshkrishnan [8] in their recent

works have proposed a two-step solution that uses a k-means

algorithm at the sender to make a priority queue for each group

to reduce the complexity of queue management at the core

switch. In the next step, they use Pro-Acknowledgement (Pro-

Ack) control that acknowledges bulk data receipt to reduce the

control signal plane for achieving lesser timeouts and

retransmissions epoch. The results show good throughput gains

but the complexity of k-means may be high in the case of

diverse nature of flows; resulting in the high overhead of

prioritized queue management. Similarly, Zou et al. [9] have

proposed an adaptive pacing (AP) mechanism to dynamically

adjust bursty inflows according to their flow concurrency. The

proposed solution may add delays over small RTO values

during a large number of flows causing packet losses.

The methodologies used in the above-mentioned work

motivated us to apply a clean slate approach by analyzing the

problem with the standard queuing theory. Instead of changing

any operations of TCP, the queuing behavior of the edge

network devices is studied and tailored to get better results. The

queuing behavior is studied under a wide spread of traffic load

at the edge of the network. This approach saves heavy proactive

processing costs to get marginal performance gains. The

literature review also highlights that the incast control is

achieved through modifications in the TCP stack whereas we

have proposed infrastructure level configuration management

that provides space to all TCP variants to capitalize their

strength and leave the option of selection with the end-user and

applications.

S. Khalid et al. / The Nucleus 58, No. 1-4 (2021) 1-8

 3

3. Analysis of Incast Behavior in TCP

The literature review presented in the preceding section

highlights two important aspects for the solution space of

incast problem. Firstly, the customized solutions may work

well under assumed conditions but a general comprehensive

solution may still be needed to cover a larger set of

applications. Secondly; predominant proposed solutions tailor

the TCP stack causing reduced universality of TCP. In this

section, we present an analysis of the TCP Incast behavior

based on the well-known TCP parameters that describe the

streamflow and congestion control operations. The major

focus of examination includes the life cycle of a TCP flow,

basic congestion control algorithms with some explicit

modifications such as fast retransmit, congestion avoidance,

and fast retransmit & recovery algorithms. The behavior of

the transport start mechanism, commonly known as Slow

Start (SS) is also analyzed for the sack of completeness.

3.1. Life Cycle of a TCP Flow

TCP data transport function starts after successful

handshake operations that establish the necessary data

structures and control parameters. The transmission starts on

a defensive note with a single frame sent to the receiver and

the sender waits for its acknowledgment. This is called the SS

phase of the session. On arrival of the Acknowledgement, the

next frames are transmitted based on the congestion algorithm

in use and described in the next paragraph. The control

parameters like Round Trip Time (RTT), flow control

window, receiver window, and SS threshold (ssthresh) are set

on the arrival of the first acknowledgment. The TCP session

arbitrates between various states like SS, Congestion

Avoidance (CA), congestion control, fast retransmit, and fast

recovery phases, etc. These phases do not apply to all flows

as the selection of congestion control algorithm decides what

subset to be used from the above-mentioned states.

3.2. Congestion Control Algorithm

TCP congestion control protocols have been actively

studied for decades for their revision to cope with evolving

network technologies. Despite its long-lived revision history,

it remains an interesting topic for research in the area of

internet transport. Traditionally, TCP congestion control

algorithms follow an Additive Increase, Multiplicative

Decrease (AIMD) approach for its data transmission over

unreliable networks. For each successful transmission of a

packet from source to destination, the Congestion Window

(CWND) increases by one frame. The CWND has a

maximum size before a packet drop is detected by either a

timeout (TIME_OUT) event or three duplicate

acknowledgments (DUP_ACKs). In the case of CA, the frame

transmission rate is slowed to linear increase from exponential

increase mode whereas, in the case of three DUP_ACKs, a

fast retransmit & recovery algorithm is activated. At this

point, TCP reduces the CWND size to half and starts

increasing again on receiving ACKs in linear mode. The

initial TCP versions like TCP Tahoe, TCP-Reno, TCP-New

Reno, TCP-Vegas, and BIC-TCP, etc. are closely resembling

clones of the above-mentioned approach. The newer versions

like TCP-CUBIC, Bottleneck Bandwidth, and Round-trip

propagation time (BBR), however, use a more aggressive

approach for increasing CWND (in cubic mode). The process

continues till a congestion epoch occurs that results in reduced

CWND. Since BBR is not a loss-based algorithm, we have not

included it in this study to be consistent with the congestion

epoch. The TCP-CUBIC has shown more promising results

for utilizing available bandwidth but the fairness in sharing

bandwidth with other competing flows still needs to be

improved, particularly fairness to flows with other TCP

variants may not be guaranteed [10]. All these TCP variants

(except BBR and Elastic-TCP) are sensitive to packet loss

events. Since packet drop event occurs due to high buffer

occupancy at one of the routers en route to the destination; it

is considered a key indicator of congestion at some node on

the network path and the transmission rate needs to be reduced

to help in solving this issue.

 In conventional communication infrastructures with

limited bandwidth, the efficiency of the fast retransmit and

recovery algorithm is measured higher in case segment loss

rate is very low (one), but in case of multiple segments drop

the efficacy of the algorithm reduces. Hence, the selection of

the right algorithm makes a significant difference in diverse

operating environments. Since incast has a specific operating

environment constraint by the low RTT, a higher number of

sessions, and a higher contention rate; the selection of the

right congestion control algorithm is crucial for better

resource utilization and increased systems throughput in

clusters and data centers.

4. Throughput Analysis using NS-2

The prime objective of analyzing TCP throughput under

incast or many-to-one (also known as fan-in) scenarios is to

find suitable configurations within the infrastructure to keep

TCP implementation consistent for all applications. We have

analyzed the TCP Incast using the ns-2 simulator. Ns-2 is a

discrete event simulator that is used for network protocol and

network traffic analysis research. Modeling of TCP incast

scenario is an interesting topic that may need many

permutations on a host of parameters including traffic

generation model, network fabrics and delay models, queue

models, and link reliability models. For throughput analysis

of various versions of TCP in scenarios where many-to-one

communication pattern is being observed, the following

topology has been used, as shown in Fig. 1.

Fig. 1: Simulation topology of the many-to-one communication pattern.

S. Khalid et al. / The Nucleus 58, No. 1-4 (2021) 1-8

4

We use the term server or session alternatively to represent

one TCP traffic generator. We have used all major TCP

variants that use loss-based congestion control algorithms.

The choice of these variants is based on their deployment

ranking for the sake of consistency and standardization. To

understand the effect of several servers, the traffic load is

increased gradually while the rest of the topology remains the

same. To understand the effect of several switches and

buffers, they are also increased one by one but Fig. 1 shows

the simplest topology where only one switch is used. The

values of some other parameters used for simulation in ns-2

are given in Table 1.

Table 1: Simulation parameters used for NS-2 simulation.

Parameters Values

The Capacity of Duplex-links 10Mbps

Propagation Delay 1ms

The Capacity of links for LAN 20Mbps

Propagation Delay for LAN 100ms

Packet Size 600 bytes

Simulation Time 20 seconds

Traffic Generator Type Exponential

Queuing Model Drop-Tail

Application FTP

The simulation parameters are set to identify the

maximum load on queues. The propagation delay plays a

pivotal role as a higher propagation delay shall cause a slower

transmission rate. In case, the inter-packet arrival rate in terms

of bit/s is higher than the transmission rate the queue built-up

is expected and in case of long-tailed burst arrival, the queues

may get full and packet drop occurs. Packet drop starts much

earlier than the complete depletion of the queues due to Early

Congestion Notification (ECN) intended to the sender to

slow-down sending rate. On the contrary, if the transmission

rate is higher than the packet arrival rate, the queues are not

expected to deplete and an even smaller buffer size of two or

three packets may be sufficient. The simulation scenarios are

created to highlight these aspects of queue management.

4.1. Simulation Results

For different TCP variants, the average throughput per

server/session is plotted with respect to the number of

servers/sessions. Average throughput per server decreases as

the number of servers is increased. This is due to multiple

factors like increased communication overhead, increased

delay at the node, and that now the same file is distributed

among more servers and the data to be sent per server

becomes less. It is noticeable that the graphs show a

significant decreasing trend with an increased workload. To

analyze the small differences in throughput of different TCP

variants, differences in the congestion control or flow control

mechanisms of these variants are attributed. The increase of

the number of servers also causes fairness issues resulting in

some of the sessions facing lower contribution of overall

bandwidth and causing activation of CA or CC modes.

 Fig. 2 shows simulation results for the average throughput

of TCP, TCP Reno, TCP New Reno, and TCP Vegas when

one switch is used and the number of servers is gradually

increased. It can be seen that the performance of all TCP

variants is poor at the high server load. The main cause of this

degradation is a higher retransmission rate due to timeouts.

The basic TCP performs defensively at the SS state causing

below-average performance even at the lower server loads.

Fig. 2: Average throughput per server for one switch.

Fig. 3 shows simulation results for throughput of TCP,

TCP Reno, TCP New Reno, and TCP Vegas when two

switches are used and the number of servers is gradually

increased. The use of multiple switches signifies an increase

in processing rates at the queues.

Fig. 3: Average throughput per server for two switches.

Fig. 4 shows simulation results for throughput of TCP,

TCP Reno, TCP New Reno, and TCP Vegas when three

switches are used and the number of servers is gradually

increased. It is noticeable that the performance of the flows

has significantly improved while sufficient switching capacity

is available in terms of alternate paths and available buffers

through adding new resources in the network fabric.

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40

T
h
ro

u
g
h
p

u
t

in
 M

b
p
s

Number of Servers

One Switch between Many-to-One Receiver
Reno Vegas TCP Newreno

0

0.5

1

1.5

2

2.5

3

3.5

1 11 21 31 41

T
h
ro

u
g

h
p

u
t

in
 M

b
p

s

Number of Servers

Two Switches between Many-to-One Receiver

Newreno Reno Vegas TCP

S. Khalid et al. / The Nucleus 58, No. 1-4 (2021) 1-8

 5

Fig. 4: Average throughput per server for three switches.

The three simulation results motivate for a simpler but

suitable infrastructural level configuration that can boost the

TCP and its variants performance at the fan-in switch. The

increase in the number of switches to deal with the arrival

traffic in a load balancing mode reduces the timeout-related

congestion epoch. The link capacity and propagation delays

can determine the suitable buffering capacity that shall be

needed in the network fabric to reduce packet drop

probability to the bare minimum level.

5. Proposed Solution for the TCP Incast Problem

The throughput analysis of TCP variants discussed in the

preceding section has highlighted two key contributors

during incast conditions. These are the buffering capacity of

the network fabric that faces fan-in and the propagation

delay of the link. It has been discussed in [11], [12] that if

the propagation delay is lesser than the average inter-packet

arrival time, a buffer size of holding maximum segment size

i.e., 64KB may prove sufficient to keep packet drop

probability to very low values. In case of propagation delay

is larger, the contention-based media access protocols may

face serious problems as the buffering capacity can quickly

deplete. Therefore, the proposed solution is based on an in-

depth buffer occupancy analysis of the network switch that

converges all the flows to a single port.

The basic constraint in deploying modified TCP

implementation lies in maintaining its standard behavior as

all the devices connected to the Internet need to use it

seamlessly. Instead of modifying the TCP stack, our

approach is to not modify the TCP implementation but we

focus on minimizing the chances of packet drop events by

adding sufficient resources at the edge of the network where

all the in-flows converge. Though customization of internet

fabric is out of the question, the intra-network fabric in a

cluster of data storage networks can be easily modified.

Hence, the following are the stages of our work that is

carried out:

i. Buffer Occupancy Analysis at the edge switch using

queuing theory.

ii. Analysis of the effects of burst-mode transmission and

steady-state transmission.

iii. Segregation of inflows based on their mode (Burst

mode or periodic packet injection).

iv. Study of the TCP packet drop events at higher load at

the edge devices.

In the succeeding section, we study the behavior of the

above-mentioned four scenarios and their related aspects

through standard queuing theory. The findings and

observations of this study are tested with the simulation

study in ns-2.

5.1. Study of Buffer Occupancy using standard queuing

theory

The queuing behavior at the routers and switches plays a

significant role in the performance studies of TCP. The

packet drop events generally occur due to partial or complete

depletion of queues at these devices. Hence, a thorough

study of buffer occupancy at these devices reveals

significant knowledge about the causes of poor throughput

of TCP sessions in a multitude of operating environments.

The real challenge in studying queuing behavior of TCP

sessions lies in the modeling of arrival and service processes

at the queue that may be too trivial using common processes

such as Poisson and exponential distributions.

Consequently, finding an accurate closed-loop quantitative

model with known network parameters such as router

capacity, propagation delay, and buffer size is not a trivial

problem as it has convolutional contributors to deal with.

Furthermore; as mentioned above, packet losses occur

predominantly as buffer overflows or near overflow states,

hence it is a natural choice to take packet loss probability as

the blocking probability in a single server queue. That forms

the basis of linking packet loss models and queuing models.

The packet loss events may be either modeled in stateless

or stateful modes. The stateless model assumes queue length

at packet arrival event as Independent and Identically

Distributed (I.I.D) random variables. This assumption works

well in long chains of routers with a sufficient set of

resources and fast service rates but may not be accurate

enough in the case of single Local Area Network (LAN)

switches. The stateful model assumes a long-range

correlation between queue length and the arrival process.

Therefore, the queue length is included in our TCP queuing

model. The packet loss probability is expressed as a function

of random variables which depend on the length of the

queue. The M/D/1/B model is considered a useful

approximation of stateless TCP queue analysis. The main

advantage of using this model is its ready availability of

explicit analytical expressions for most quantities of interest,

including the blocking probability. Models based on

M/M/1/B queues have been considered good for fluid model

approximation. These models have, however, depicted

inaccuracies in acquiring the complex statistical structure of

TCP traffic [13].

Altman et al. [14] studied a particular case where the

flows contain a single packet drop signal and a useful

observation is made in showing that flow control can be

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40

T
h
ro

u
g
h
p

u
t

in
 M

b
p
s

Number of Servers

Three Switches between Many to One Receiver

Newreno Reno Vegas TCP

S. Khalid et al. / The Nucleus 58, No. 1-4 (2021) 1-8

6

reformulated in terms of an equivalent M/G/1 queue, where

the transmission

rate is translated into the workload of the queue. The

congestion signals correspond to packet drop at the queue

according to the Poisson process. This transformation is also

valid in our study of TCP congestion behavior during incast.

We have worked with the window size rather than the

transmission rate. In our model, the data rate of a congestion

window-based flow control mechanism is equal to the

window size divided by the RTT of the session. Assume W

denotes the maximum window size; the limitation on the

window size is due to the congestion control algorithm of

TCP. Though variants of TCP have slightly different

congestion control mechanisms, the primary reason for

congestion control activation is a packet drop event and in

case of no packet drop or duplicate ACKs with the window

size smaller than W, the congestion window of the protocol

increases linearly. We assume that in a sequence of ACKs;

in the case of the stateless mode, there may be a random

number of packet drop events as per the Poisson process

while in the case of stateful mode, the same is based on

standard Gaussian distribution. The second important

classification is based on steady-state transmission and burst

transmission. The steady-state TCP session packet arrival is

modeled by the standard Poisson process whereas the burst

arrival is modeled by the standard exponential distribution.

The average transmission rate can be described as follows:

𝑿 = 𝐥𝐢𝐦
𝑻→∞

𝟏

𝑻
∫ 𝑿(𝒕)𝒅𝒕
𝑻

𝟎
=

𝑬(𝑾)

𝑹𝑻𝑻
 (1)

where E(W) is the mean or expected value of congestion

window length during a short interval of time.

Eq. (1) indicates that in the case of small 𝑅𝑇𝑇 such as in

the case of LAN environment, the transmission rate shall be

generally higher and the only restricting factor is the size of

the congestion window that is controlled by packet drop

events.

Based on Eq. (1), we use TCP flow behavior using the

fluid model to find out the rate of change in modeling

throughput as follows [15]:

𝒅𝒙(𝒕)

𝒅𝒕
=

𝟏

𝑹𝑻𝑻𝟐
− (𝒙(𝒕 − 𝑹𝑻𝑻). 𝒑(𝒕 − 𝑹𝑻𝑻).

𝒙(𝒕)

𝟐
 (2)

where 𝑝(𝑡) is the packet loss rate at time 𝑡. The TCP

throughput 𝑥(𝑡) and desired throughput 𝑥 (𝑡) (with known

packet drop rate) satisfy the following relation:

𝑑𝑥(𝑡)

𝑑𝑡
=

𝐿𝑜𝑔2

𝑅𝑇𝑇2
− (𝑥 (𝑡) − 𝑥(𝑡)) − 𝑝(𝑡 − 𝑅𝑇𝑇). 𝑥(𝑡 −

 𝑅𝑇𝑇). 𝛽𝑥(𝑡) (3)

where β is a constant describing the variation in the

packet arrival process. Based on Eq. (3) the expected

throughput rate under a given tolerable packet drop rate is

given by Eq. (4).

𝑑𝑥 (𝑡)

𝑑𝑡
= 1 − (𝑝(𝑡 − 𝑅𝑇𝑇)𝑘1 𝑥(𝑡−𝑅𝑇𝑇) 𝑘2 𝑥(𝑡) − 𝑝(𝑡 −

 𝑅𝑇𝑇). 𝑥(𝑡 − 𝑅𝑇𝑇)(𝑥(𝑡) − 𝑥(𝑡)) (4)

where 𝑘1 & 𝑘2 are constants.

Eq. (1) to Eq. (4) suggest that the desired throughput is

specifically dependent on the packet drop rate provided the

other parameters are in their normal ranges. If we assume

𝑁 flows are competing for switch resources, then the buffer

size 𝐵 becomes an important parameter to be estimated to

reduce packet drop rate to a minimum value. Hence, the

value of 𝐵 is estimated as follows [16]:

𝐵 ≅ 𝑁. 𝑥 (𝑡) (5)

Eq. (5) forms the basis of our simulation studies for an

𝑀/𝐺/1 type queue for minimizing the TCP Incast problem.

In the case of a minimum desired rate per flow, the queue

model is tailored to 𝑀/𝐺/1/𝐵 for constraint stateful

behavior of the queue, where 𝐵 is the maximum buffer size.

Using the above queue model and the TCP congestion

control dynamics, the following behavior was observed to

explain the TCP Incast problem.

5.2. Model Description and Evaluation

We have calculated the value of B based on the number

of contending sessions and the average arrival rate of

sessions as modeled in Eq. (5). The number of sessions is

increased to much higher numbers to monitor the impact of

contention due and propagation delay. This provides a base

value to the appropriate link speed and helps to

accommodate all traffic loads within a very low probability

of packet drop rate. It also helps to reduce queuing delay in

the system in case of deviation from average transmission

rates particularly in case of burst mode traffic arrival. The

burst mode traffic arrival process with packet drop events is

modeled through exponential distribution. The choice of this

model is based on increasing the reliability of queuing

systems under heavy load and the possibility of packet drop

events due to an arrival rate much higher than the average

rate of arrival.

The underlying assumption of the proposed solution is to

minimize packet loss events and keep competing TCP

sessions in congestion avoidance mode rather than

triggering RTO or fast retransmit mode. In the case of

internet routers, the propagation delay is generally high

causing queue built-ups whereas in the case of a data center

core switch the RTO values are generally very small causing

retransmissions even in case the packet is not lost but

waiting in the queuing system due to heavy traffic load.

Therefore, excessive buffering can easily solve the problem

by accommodating all traffic arrivals and adaptively

increasing the RTO values to reduce retransmission timer-

based events.

Based on this hypothesis, we observe packet drop rate at

a given traffic load in both average and burst mode and then

evaluate throughput of the TCP sessions with sufficient

buffering space at the core switch. This approach provides

support to all TCP variants in maintaining their operating

curve near congestion avoidance mode. In the case of long

streamflow fairness, the issue may also arise and some of the

flows may be taking a larger share of bandwidth than the

S. Khalid et al. / The Nucleus 58, No. 1-4 (2021) 1-8

 7

others. But in the case of shorter flows, the proposed model

also ensures better fairness amongst the competing flows

due to lesser wait time in the queue. This applies to all TCP

sessions working with legacy congestion control algorithms.

 Fig. 5 shows a plot of buffer occupancy at different TCP

session loads is presented. It is observed that with a large

buffer capacity of 10000 segments, the queue remains

under-utilized throughout the simulation period. In the case

of a traffic load of 100 TCP sessions, the queue saturates

near the end of simulation time. It’s worth mentioning that

the study is carried out in burst mode. The queue gets

quickly fully occupied in the case of 1000 (Nos) and 10000

(Nos) simultaneous TCP sessions increasing the packet drop

probability.

Fig. 5: Buffer occupancy at varying TCP session loads with respect to packet

arrival at the edge device.

In Fig. 6, a plot of packet drop events for ten

simultaneous TCP sessions is presented. It is noticeable that

the packet drop event is zero throughout the simulation run.

Fig. 7 to Fig. 9 show a significant number of packet drop

events at 100, 1000 & 10000 simultaneous sessions,

respectively. The queue gets filled during some state of

simulation and the packet drop events are much more

frequent at higher loads. The higher packet-drop events in

this area explain the reasons behind poor TCP performance

at higher loads leading to the TCP Incast problem.

Fig. 6: Packet drop events at 10 simultaneous TCP sessions in burst mode.

Fig. 7: Packet drop events at 100 simultaneous TCP sessions in burst mode.

Fig. 8: Packet drop events at 1000 simultaneous TCP sessions in burst mode.

Fig. 9: Packet drop events at 10000 simultaneous TCP sessions in burst mode.

5.3. Multiple Queue Model

The multiple queues models like 𝑀/𝐺/𝑛 and 𝑀/𝐺/𝑛/𝐵

also need more study to get further insight into the TCP

behavior under multiple queue management schemes. Incast

may be one special case in such a study. In using a leaf-spine

topology at the network edge instead of standard 3-tier

topology, the cascaded buffering analysis is reduced to a

lesser number of flows per switch, resulting in better

resilience to the TCP Incast problem. In the simulation study,

we have analyzed these scenarios. In real scenarios, the leaf-

-2000.00

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

0.00E+00 2.00E-03 4.00E-03 6.00E-03 8.00E-03 1.00E-02

N
o
 o

f
E

v
en

ts

Time (Sec)

Cummulat ive TCP Packet Arriva l Pat tern a t 100

Sess ions
Arrival (100 Sessions) Drop Event

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

0.00E+00 2.00E-03 4.00E-03 6.00E-03 8.00E-03 1.00E-02

N
o

.
o

f
E

v
en

ts

Time(Sec)

Cummulat ive TCP Packet Arriva l Pat tern a t 1000

Sess ions

Arrival (1000 Sessions) Drop Event

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

0.00E+00 2.00E-03 4.00E-03 6.00E-03 8.00E-03 1.00E-02

N
o

.
o

f
E

v
en

ts

Time(Sec)

Cummulat ive TCP Packet Arriva l Pat tern a t 10000

Sess ions

Arrival (10000 Sessions) Drop Event

1.00

10.00

100.00

1000.00

10000.00

1 10 100

N
o

.
o

f
ev

en
ts

Time (sec)

The Buffer Occupancy at 10000 Queue Size
Arrival (10 session) Arrival (100 session)

Arrival (1000 sessions) Arrival (10000 sessions)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

0.00E+00 2.00E-03 4.00E-03 6.00E-03 8.00E-03 1.00E-02

N
o
.

o
f

E
v
en

ts

Time (Sec)

Cummulat ive TCP Packet Arriva l Pat tern a t 10

Sess ions

Arrival (10 Sessions) Drop Events

S. Khalid et al. / The Nucleus 58, No. 1-4 (2021) 1-8

8

spine topology is used with specialized switching fabric like

Infiniband switches, etc.

6. Results and Discussions

The overall gain achieved with the proposed scheme, in all

loss-based congestion control variants of TCP is plotted in Fig.

10. It can be seen that after increased buffering in the network

fabric, the throughput of all the TCP variants has shown

improvement. The best result can be noticed in the case of TCP-

CUBIC. The main cause of this increase is an increase in

congestion window aggressively to use maximum available

bandwidth to get better throughput. Similarly, all other variants

have also shown significant throughput gain. Fig. 11 shows the

same result in percentage (%) values making the gain more

visible in the graph.

Fig. 10: Throughput gain for various TCP variants with the proposed scheme.

Fig. 11: Percentage gain of major loss-based TCP variant with the proposed

scheme.

The performance bottleneck of TCP in highly critical

computing infrastructures like data centers, clusters, and clouds

greatly hinder the leverage of such technologies in their business

processes, resulting in reduced earning and reduced cost-benefit

margins. The rectification of this issue is essential for the low-

cost use of conventional technologies. Although other options

like InfiniBand switches with the inner translation of TCP to

native protocols are available, the widespread use of TCP and its

standardized stature need to be preserved for better utilization of

already deployed global computing and communication

infrastructure. In this paper, we have analyzed the TCP Incast

problem in a cluster environment and found limiting factors that

cause poor resource utilization and higher job completion time

on clusters with respect to TCP that otherwise has been accepted

and appreciated as one of the most trusted transport protocols.

The study finds some problems in the congestion control

mechanism of various TCP variants. The key role of packet drop

events has also been studied through queuing theory and we

conclude that a scalable queuing system at the edge can greatly

improve performance at significantly higher traffic loads. The

study of the dynamics of the multiple queue model in improving

TCP performance has been identified as a future work direction.

References

[1] W. Chen, F. Ren, J. Xie, C. Lin, K. Yin and F. Baker, “Comprehensive

understanding of TCP Incast problem”, IEEE Conf. Comp. Comm.

(INFOCOM), Kowloon, Hong Kong, pp. 1688-1696, 2015.

[2] Y. Chen, R. Griffith, J. Liu, R.H. Katz and A.D. Joseph, “Understanding

TCP Incast Throughput Collapse in Datacenter Networks”, Proc. ACM
work. Res. enter. net., Barcelona, Spain, 2009.

[3] P. Sreekumari and J. Jung, “Transport protocols for data center
networks: a survey of issues, solutions, and challenges”, Photo. Net.

Comm., vol. 31, no. 1, pp. 112-128, 2015.

[4] H. Wu, Z. Feng, C. Gu and Y. Zhang, “ICTCP: Incast congestion

control for TCP in data-center networks”, IEEE/ACM Trans. Net.

(ToN), vol. 21, no. 2, pp. 345-358, 2013.

[5] L. Xu, K. Xu, Y. Jiang, F. Ren and H. Wang, “Throughput optimization

of TCP Incast congestion control in large-scale data center networks”,

Comp. Net., vol. 124, pp. 46-60, 2017.

[6] J.T. Luo, J. Xu and J. Sun, “Modeling TCP Incast Issue in Data Center
Networks and an Adaptive Application-Layer Solution”, J. Elect. Sci.

Tech., vol. 16, no. 1, pp. 84-91, 2018.

[7] Y. Xu, S. Shukla, Z. Guo, S. Liu, A.S. Tam, K. Xi and H.J. Chao,

“RAPID: Avoiding TCP Incast Throughput Collapse in Public Clouds

with Intelligent Packet Discarding”, IEEE J. select. are. comm., vol. 37,
no. 8, pp. 1911-1923, 2019.

[8] B. Thiruvenkatam and M. Mukeshkrishnan, “Optimizing data center

network throughput by solving TCP Incast problem using k‐means
algorithm”, Int. J. Comm. Sys., 2020.

[9] S. Zou, J. Huang, J. Wang and T. He, “Flow-aware adaptive pacing to
mitigate TCP incast in data center networks”, IEEE/ACM Trans. Net.,

pp.134-147, 2020.

[10] K. Sasaki, M. Hanai, K. Miyazawa, A. Kobayashi, N. Oda and S.

Yamaguchi, “TCP fairness among modern TCP congestion control

algorithms including TCP BBR”, IEEE Int. conf. clou. Net.
(CLOUDNET), pp. 1-4, 2018.

[11] H. Wang, “Trade-off queuing delay and link utilization for solving
buffer bloat”, ICT Exp., vol. 6, no. 4, pp. 269-272, 2020.

[12] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet”, Proc. USENIX Symp. Net. Sys. Des. Imp.

(NSDI), pp. 329-342, 2018.

[13] H. Hisamatu, H. Ohsaki and M. Murata, “Modeling a heterogeneous

network with TCP connections using fluid flow approximation and

queuing theory”, Proc. Perf. Cont. Nex. Gen. Comm. Net., vol. 5244,
2003.

[14] E. Altman, K. Avrachenkov, C. Barakat and R. Núñez-Queija, “State-
dependent M/G/1 type queueing analysis for congestion control in data

networks ”, Proc. IEEE INFOCOM Ann. Conf. Comp. Comm. Soc.,

vol. 3, pp. 1350-1359, 2001.

[15] G. Raina and D. Wischik, “Buffer sizes for large multiplexers: TCP

queuing theory and instability analysis”, Nex. Gener. Inter. Networks,
pp. 173-180, 2005.

[16] A. Dhamdhere, H. Jiang and C. Dovrolis, “Buffer Sizing for Congested
Internet Links”, Proc. IEEE Ann. Conf. IEEE Comp. Comm. Soc., vol.

2, pp. 1072-1083, 2005

0

2

4

6

8

10

1 2 3 4 5 7 10 15 20 25 26 27 28 29 30 35 40

T
h
ro

u
g

h
p

u
t

(M
b

p
s)

Number of Concurrent Sessions

Throughput Gain with Proposed Queuing Management

TCP Vegas

Reno NewReno

CUBIC Modified TCP

Modified Vegas Modified Reno

Modified NewReno Modified CUBIC

15

25

35

45

55

1 2 3 4 5 7 10 15 20 25 26 27 28 29 30 35 40

T
h
ro

u
g

h
p

u
t

G
ai

n
 (

%
)

Number of Concurrent Sessions

Percentage Throughput Gain with Proposed Queuing

Management
Modified TCP

Modified Vegas

Modified Reno

Modified NewReno

Modified CUBIC

https://www.semanticscholar.org/author/B.-Thiruvenkatam/2005719071
https://www.semanticscholar.org/author/M.-Mukeshkrishnan/2003285271

