
 The Nucleus 59, No. 3-4 (2022) 40-47

www.thenucleuspak.org.pk

 40

The Nucleus

I S S N 0 0 2 9 - 5 6 9 8 (P r i n t)

I S S N 2 3 0 6 - 6 5 3 9 (O n l i n e)

Paki stan

The Nucleus

Transformation of UML Diagrams based on their Overlapping: An Algorithmic Approach

M. Rehman1*, S. Ullah1, A. Siddique2

1Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan

2Department of Computer Science and Information Technology, Ghazi University, Dera Ghazi Khan, Punjab, Pakistan

A B S T R A C T

Modeling methods in general and Unified Modeling Language (UML) in particular, have gained trust in software developer communities. UML diagrams are

profoundly utilized by software developers to build, model and visualize the working of the software. While the comprehension of the UML models can
introduce ambiguities in the software. As there is no specification on how these models should be analyzed. Therefore, these models sometimes convey

inconsistent semantics in the software systems. So, there must be some automated procedure in which these models be transformed into one another, to remove

analyst-introduced ambiguities. For this purpose, the conversion between UML diagrams is a necessity. This paper aims at solving this inconsistency gap
between UML diagrams by providing a novel approach to conversion between UML models. In this paper, we have proposed novel techniques to convert 1)

UML Use-Case diagram into UML Communication diagram. 2) UML Communication diagram into UML Component diagram. The said approach is validated

using two case studies.

Keywords: UML, Use-Case, Communication. Component, View Models.

1. Introduction

UML as its name suggests is used to model, document &

visualize software systems and Object-Oriented systems. It

provides a standard for making software blueprints, from

conceptual modeling to behavioral modeling. The conceptual

modeling paves way for business processes handling like

programming language constructs, schemas and over-the-

shelf code. In the same way, behavioral modeling resolves the

behaviors of data flow, activity flow, methods handling and

complexity handling of business processes. UML tools have

always proved their best in handling complexity in terms of

software design and development [1].

UML has emerged as a course of study for university

students and a lot of research is done in this field. There are a

variety of diagrams in UML to model different aspects of the

system. Use-case diagram for the handling of functional

requirements, a communication diagram for captivating

message passing between classes and a Component diagram

for dealing with various structural components [2, 3].

During the system development phase, there are many

aspects/views of the system made under different models. If

these views vary or show different systems at any abstraction

level, the system formed would be inconsistent. Therefore, the

temporal view of the complete system should not be varying

at any point in time. Such inconsistencies/contradictions

introduced during the design phase have a paramount effect

on software projects [4]. For example, a particular Use-Case

diagram of an ATM system shows that the system includes

pin verification to the limit of three from the user. If the user

fails to insert the correct pin, his/her card will be blocked and

an automated alert be sent to his/her number. The same

systems Class diagram shows all methods, classes and objects

of the ATM system but failed to include the three-attempt

verification. The mistake goes along in other diagrams and

finally, a system is built without the three-attempt

verification. The developer holds the designer for the mistake

and the designer holds the committee who approved the

design. This type of security inconsistency proves to be

fatal/devastating for the companies. Among various real-time

examples of software design issues, one happened in 2018,

when a fighter plane system was developed to detect targets

and respond accordingly. But the jet can only detect a target

correctly, if more than 2 targets befall at the same time, they

are detected as no target, making it a multifaceted software

design failure [5].

Currently, no technique exists to transform UML

diagrams into one another or to transfer any of the diagrams

into code that has formal semantics [6]. Many authors have

however, proposed and given algorithms to transform

between the diagrams, as is specified in SLR table 1. State

charts and sequence diagrams are made from Use-Case

diagrams [7]. UML diagrams are made by a combination of

Simple English and OCL (Object Constraint Language) [8].

These languages although rigorously trying to bring meanings

into the diagrams, at the same time introduce ambiguity in the

design of the system as:

a. There is no formal way to analyze and verify the diagrams.

b. The graphical models lack transformation details, i.e., they

cannot be transferred into one another by any proven

method.

c. As natural language is used in modeling, these diagrams

sometimes give a two-way meaning, which introduces

ambiguity in the software implementation.

These inconsistencies between UML diagrams like Use-

Case, State and Sequence diagrams have always remained a

major focus of researchers. UML models are translated into

formal languages to avoid inconsistency problems described

earlier [9]. Some authors have claimed that these

inconsistencies between the UML diagrams are due to the

Corresponding author: madiha.rehman@kfueit.edu.pk

M. Rehman et al. / The Nucleus 59, No. 3-4 (2022) 40-47

 41

overlapping between various diagrams of UML. As is said by

[10, 11] the model would remain consistent if no overlapping

of elements exists.

UML diagrams are also used to depict multifaceted

systems and describe their dynamic and static behaviors. This

type of analysis requires that the modeling used must be

unambiguous and cope with the complexity of the system

[12].

In this study, we have proposed two algorithms that can be

used to transform the use-case diagram into the component

diagram, using the communication diagram as a mid-path.

Separate algorithms are proposed to handle each diagram's

complexity. Two different case studies are incorporated, to

validate the algorithms.

2. Literature Review

In today’s world, the software is becoming more and more

complex. It is being accepted by the software industry that it

is not possible to test all aspects of the software [13]. It is thus

required to maintain a quick balance between the software

industry and customers by keeping the complexity level very

low [14]. The OMG (Object Management Group) Modeling

and MDD (Model Driven Development) are becoming more

of a drift. Model Driven architecture is taking us towards

transformations. These transformations between a set of

models will ultimately lead to better software development.

MDD focuses on software development as a queue of model

transformations from requirements engineering to analysis,

design, implementation and deployment [8].

The software industry has always been fonder of software

assessments and assurance. Very less work has been done in

the field of model quality and their concept is very poorly

understood. Although Modeling is used from the very early

stage of the system and software and moves until the last stage

of the system is achieved [15].

From the emergence of UML in the late 1990s and towards

2007, modeling language issues dominated the software

industry. UML has gone through significant changes in its

semantics and metamodeling. In recent times, Researchers

and the software industry found more interest in MDD (Model

Driven Development) and MDA (Model Driven

Architecture).

Similarly, developers seemed to be fonder of OCL (Object

Constraint Language) and QVT (Query View

Transformation). In January 2020, a group of researchers

listed the challenges faced by the software industry in terms

of Modeling. These include model analysis and verification,

models at runtime, modeling databases and scalability issues

[16].

In 2005, a study was conducted on the quality and

implementation of conceptual models. The study was based

on finding ways for model structure, validation structure and

quality insurance. This study reported issues like the

indetermination of scope, origin and ingenuity of structural

models [17]. A group of researchers worked on finding the

metrics for the UML Class diagram. They have reported a

range of metrics that can be used to measure various UML

Models, like size, complexity, coupling, cohesion, etc. These

metrics can be ranged from UML Models to OO design

models [18].

In 2009, a group of authors combined to examine the

consistency level between UML Models. The study was

completed with the following facts:

a. There exists a serious gap in the level of consistency

between the various diagrams. And this gap covers all the

problems ranging from requirement gathering to

development errors [15].

b. The study also concluded that these gaps need serious

formal language for consistency management [19].

A paper was presented to describe a rule production

system [20]. Another paper proposed algebraic expressions to

conquer inconsistencies [21]. A Study on the language view

of the UML Models proposes to use only the grammar

productions specified with syntax to be used with UML

Models. The study further describes the language to eliminate

inconsistency using XMI language [22].

Our literature review is based on the study of journal

papers and conference proceedings to find out the potential

problems and inconsistencies in the UML models. The

problems were identified to streamline the process of

Software design and development. The systematic literature

review is provided in table 1.

Table 1: Systematic Literature Review

Sr.No Paper Name Journal / Conference,
Year

Methodology

1 Structural and Semantic

Similarity Measurement of
UML Use-Case diagram

[25]

Journal, 2020 Nazir et al have addressed the software artifacts (diagrams) reuse. They measured the

structural and semantic similarity between Use-Case diagrams by using Graph Edit
distance. In this technique, they converted the actors and Use-Cases into graphs and then

measured the distance between edges. For semantics similarity, the authors have proposed

the use of Word Net and WuPalmer techniques. The evaluation of the proposed solution
is made by comparing similarity values between Pearson experts and the authors' results.

2 Automatic Transformation
of User Stories into UML

Use-Case diagrams using
NLP Techniques [26]

Conference 2018 Meryem et al have addressed the advantage of the Use-Case diagram in terms of
Requirements gathering. As the use of Agile technologies is a trend in the current

scenario, the authors have proposed the conversion of User stories in to Use-Case
diagram. In such an automatic way, no user story would be left out.

M. Rehman et al. / The Nucleus 59, No. 3-4 (2022) 40-47

 42

3 Verifying the Consistency
of UML Models [13]

Conference 2016 The consistency of UML diagrams is verified by converting the consistency rules into
constraints. These OCL constraints are then converted to a plug-in to check the UML

models against these constraints.

4 Identification and check of

inconsistencies between
UML diagrams [27]

Conference, 2013 Xianhong has discussed the inconsistencies between various UML diagrams and has

devised 13 rules to check the consistency. The author has also proposed to check for
consistency problems manually or dynamically.

5 A framework for reuse of
multi-view UML artifacts

[28]

Journal 2013 The authors have proposed a mechanism to reuse UML artifacts. The mechanism would
be carried out in 4 steps, the pre-filtering stage: the UML artifacts would be gathered with

similar requirements. the multi-view retrieval - the requirement specifications would be
matched and ranked with the previous artifact’s requirements. After the two stages, the

requirements would be adapted and integrated with our existing system.

6 Comparative Study on DFD

to UML diagrams

Transformations [6]

Journal 2011 The authors have proposed the transformation of DFD (Data Flow diagram) into UML

diagrams. The Level 1 DFD can be converted to Use-Case, Level 2 DFD can be converted

to interaction, while level 3 DFD with the integration of the E-R diagram can be converted

to the Class diagram. The author has also explicitly stated that this conversion is tool free.

7 A systematic review of

UML Model consistency
management [19]

Journal, 2009 A study was conducted to examine the consistency level between UML Models. The study

was completed with the following facts: There exists a serious gap in the level of
consistency between the various diagrams. And this gap covers all the problems ranging

from requirement gathering to development errors. The study also concluded that these

gaps need serious formal language for consistency management.

8 Model Transformation in
Software Performance

Engineering [29]

Conference, 2006 The authors have discussed various Model Driven Engineering approaches to transform
software models. They have discussed the Petriu approach to transform UML

collaboration into sequence and Activity diagrams. Other frameworks discussed include

Software Performance MDA Framework, PIPM, PSPM and SPMDA horizontal &
vertical transformations.

9 Theoretical and Practical
issues in evaluating the

quality of conceptual
models: current state and

future directions [17]

Journal, 2005 Daniel et al have addressed the quality issues of conceptual models. The authors have
suggested 12 issues in the quality of conceptual modeling like lack of consistency, lack

of knowledge, no focus on product, no empirical testing, etc. In a nutshell, the problems
with UML diagrams consistency were reviewed.

10 A Survey of Metrics for

UML Class diagrams [18]

Journal, 2005 A group of researchers worked on finding the metrics for the UML Class diagram. They

have reported a range of metrics that can be used to measure various UML Models, like
size, complexity, coupling, cohesion, etc. These metrics can be ranged from UML Models

to OO design Models.

11 Transformations Between

UML diagrams [30]

Journal, 2003 Petri et al have used the overlapping in UML artifacts to transform the diagrams. They

have suggested the common UML diagrams that have the most overlapping features be
transformed into one another. As Sequence diagram can be transformed into a Class and

State chart diagram. Sequence and Collaboration diagrams can be fully transformed.

While no tools are used for the transformations. Their overlapping content is used for
transformations.

12 An Integrated Semantic for
UML Class, Object and

State diagrams Based on
Graph Transformations

[31]

Conference, 2002 Sabine et al have addressed the software diagrams inconsistencies by proposing graph
transformations. The authors have used UML Class, Object and State diagrams and

converted them into graph transformations. The graph transformations can then be used
for the semantic similarity between diagrams.

13 Integration and

Transformation of UML
Models [32]

Conference, 2002 The authors have discussed the relation between different UML models. The authors have

proposed that the relation can be more technically understood if two or more models be
converted to one another like a sequence diagram can be converted into state charts.

14 Verifying the Consistency
of UML Models [13]

Conference 2016 The consistency of UML diagrams is verified by converting the consistency rules into
constraints. These OCL constraints are then converted to a plug-in to check the UML

models against these constraints.

3. UML Diagrams

3.1. Use-Case diagram

The Use-Case diagram is used to capture the functional

requirements of a software system. It describes how a system

would work. For example, how a user interacts with the

system and what are the system's functionalities [23]. The

main artifacts of a Use-Case diagram are:

a. Use-Case: Use-Cases describe a piece of behavior /action

executed by the system.

b. Actor: Any system or person that directly or indirectly

interacts with the system.

c. Interactions: Interaction between the Use-Cases and the

actor shown with straight lines

For our study we have chosen the Use-Case diagram for

validating our point due to the following reasons:

i. The Use-Case diagram is the first diagram made to capture

the system's requirements. All other diagrams are made

after the Use-Case.

ii. As Use-Case diagram is a behavioral diagram that shows

the interactions of all systems/users happing within the

system.

M. Rehman et al. / The Nucleus 59, No. 3-4 (2022) 40-47

 43

The only UML diagram that includes possibly all the

requirements initially gathered for the system.

3.2. Communication diagram

The Communication diagram also previously known as

the Collaboration diagram handles interactions between

objects/parts of a system. Communication diagrams are used

when a mix of information from Class, Use-Case and

Sequence diagram is required [24]. This diagram is used to

handle the behavioral aspect of the Use-Case diagram [24]. It

consists of three major components:

a. Objects: The Classes in the scenario that depict major

objects between which communication is held.

b. Messages/Actions: The communication between objects,

diagrammed as Messages with sequential numberings.

The Messages can be synchronous or asynchronous.

c. Actor: Any system or person that directly or indirectly

interacts with the system. An Actor can be another system

or a person.

For this study communication diagram is chosen due to

the following reasons

i. A communication diagram is an interaction diagram that

is very close to the class diagram in general.

ii. The Use-Case/actions in the Use-Case diagram can easily

be mapped with objects in the Communication diagram.

iii. Both these diagrams help show the behavioral image of a

system.

iv. The communication diagram being very close to the class

and Use-Case is also proven to share similarities with

component diagram.

3.3. Component diagram

The Component diagram being the Structural diagram of

UML is used to model the structural elements of the system.

This diagram is suitable to visualize the components of a

system and its dependencies. It consists of three main

artifacts:

a. Component: The objects of the systems are represented as

Components.

b. Interface: Operations performed by the components are

shown as Interfaces.

c. Dependencies: This shows how one component requires

another component. The possible interaction between the

two.

The component diagram is chosen due to the following

reasons:

i. The component diagram is close to the communication

diagram, as both diagrams focus on identifying

components/classes and then identifying the message

passing between the two.

ii. The component diagram is a structural diagram, therefore,

to show the transformation between behavioral and

structural UML this is chosen.

iii. The components from component diagram can easily be

merged with objects in the communication diagram.

iv. The component diagram is very close to the class diagram.

Classes represent logic, while component diagrams

implement Logic.

4. Problem Statement

In 2018, a software glitch in fighter air crafts was detected,

as the fighter jet was unable to detect multiple targets, it was

a huge software fail and fighter planes were called off. The

case was opened and the developer and analyst found that

detecting an approaching target was modeled, which caused a

semantic misunderstanding [5].

In a nutshell, all the issues are listed for briefing:

4.1. Gap between diagrams

As UML diagrams are made to depict the structural and

behavioral components of a system. The relation between the

diagrams lacks. Due to this lacking the software systems are

severely affected. Software developers most often use class,

activity, sequence and Use-Case to code their systems. A

method from the class diagram lacking in activity cannot be

coded and hence produces a serious error in the software.

These types of errors are more logical and thus cannot be

found during the testing process.

4.2. Transformation

Each diagram has its behavior. For a single system, it

cannot be ensured that one model is completely transformed

into other respective models.

4.3. Inconsistency

When diagrams convey wrong semantics, they are said to

be inconsistent. We cannot rely on the models for system

verification. The Inconsistency between diagrams can be

elaborated as: one diagram features a static method, while the

other diagram for the same system ignores the static feature

and introduces another behavioral component.

4.4. Verification

The semantic inconsistency between diagrams produces

ambiguities in the overall system. Thus, the system fails in the

verification phase when the customer tries to verify the system

on his/her requirements.

5. Proposed Methodology

As discussed earlier the gap between UML diagrams can

introduce serious problems in software validation. In

proposed methodology following steps have been devised:

i. Conversion of Use-Case diagram to communication

diagram with the help of the proposed Algorithm 01.

ii. Conversion of communication diagram to component

diagram with the help of the proposed Algorithm 02.

The Block diagram of the proposed methodology is shown

in Fig. 1. While the complete methodology diagram in Fig. 2,

describes the level-to-level conversion between the elements

of all diagrams.

M. Rehman et al. / The Nucleus 59, No. 3-4 (2022) 40-47

 44

Fig. 1: Block diagram of Proposed Methodology.

Fig. 2: Detailed Methodology diagram.

To convert the Use-Case diagram to a communication

diagram, we have used the steps given in the pseudocode below

as Algorithm 01. The algorithm takes a Use-Case diagram as

input, decompose the diagram into pieces (Actors, interactions

and Use-Cases) and one by one converts the Actors to objects

in line 7 to 11. If any Actor has sub actors, for example, a

customer can be a manager or an employee, lines 12 to 17

convert this type of interaction into object interactions. Line 18

to 21 transfer the actions into object messages.

Algorithm 01- Pseudocode that builds Communication

diagram from Use-case diagram

1: Start

2: Input: {Use-Case diagram}

3: Actor ← actors from input

4: Message ← Usecases/Actions from input

5: Object ← null store for communication diagram

6: Boolean: isinherited

7: If (∃ Actor)

8: For each (Actor a)

9: Object a ← Actor a

10: End for

11: End if

12: If (Actor a connected to Actor b)

13: Isinherited ← true

14: For each (Isinherited)

15: Object a ← get connected to object b

16: End for

17: End if

18: For each (Message)

19: Object a.Message ← Actor a. usecase

20: End for

21: end

The pseudo-code for proposed Algorithm 02, given

below is used to convert any communication diagram to a

component diagram. The Algorithm takes as input a

communication diagram and decomposes the diagram into

objects, Messages and Message directions. Line 7 to 11 is

used to convert objects to components. Line 12 to 17 makes

connections between the components. Line 18 to 25 checks

the Message directions of the messages. If Messages are sent

from one object to another, then an interface is required by

the sending object and vice versa.

Algorithm 02: Pseudocode that builds Component diagram

from Communication diagram

1: Start

2: Input: {communication diagram}

3: Object ← Objects from communication diagram

4: Messages ← Message interactions between objects

5: Message direction ← Send or Receive

6: Component ← null store for component diagram

7: If (∃ Object)

8: For each (Object a)

9: Component a ← object a

10: End for

11: End if

12: If (object a connected to object b)

13: Isconnected ← true

14: For each (isconnected == true)

15: Component a ← get connected to component b

16: End for

17: End if

18: For each (Message direction)

19: If (Message direction == Send)

20: Component require interface

21: Else

22: Component provide interface

23: End if

24: End for

25: end

The proposed algorithms are universal techniques of

conversion that can be implemented in any programming

language. This provides the ease of platform independency,

as any platform, language construct can be utilized to

implement this study.

6. Validation with ATM System Case Study

We have used ATM (Automated Teller Machine) case

study because it's easy to understand. The Use-Case diagram

shown in Fig. 3 shows the main functional requirements of

an ATM system.

M. Rehman et al. / The Nucleus 59, No. 3-4 (2022) 40-47

 45

Fig. 3: Use-Case diagram of an ATM Machine.

The Use-Case comprises of

1. User / Customer of the system,

2. The System,

3. A set of actions/Use-Cases the user can perform.

The Communication diagram of the system shown in Fig.

4 uses

1. Users / Customers of the System

2. The system

3. Set of Message passing between the components.

Fig. 4: Communication diagram of ATM Machine.

The conversion with the use of our proposed Algorithm 01

is simplified in table 2, where the actors are converted to

objects and Use-Cases are converted to a set of interactions

between the objects.

Table 2: Conversion table of Use-Case diagram

Use-Case diagram Communication diagram

Actors Objects

Customer Customer

ATM ATM

Bank Bank

Use-Cases Interactions

Withdraw Funds
All Use-Cases will be converted into
communication messages

Transfer Funds

Query Account

The communication between the Actors and Use-Cases

are made clearer and sounder with the help of communication

messages. This is the one reason to choose a communication

diagram as a mid-path between the Use-Case and component.

The behavioral Use-Case diagram lacks communication

messages, while the Communication diagram includes

sequential listings of messages to enhance readability.

Conversion table 2 clearly shows the relation between the

Use-Case and Communication diagram. Our study is focused

on the conversion of a Behavioral diagram into a Structural

diagram.

So, we will be using the Component diagram (Structural

diagram) into which the behavioral constraints of the

communication diagram can be easily transformed as shown

in Fig. 5.

Fig. 5: Component diagram of ATM Machine.

The Component diagram clearly shows how the structural

components of an ATM Machine collaborate. The three main

components remained the same as in Use-Case,

Communication diagrams shown earlier. However, the other

artifacts shown in Fig. 5, depict the various structural

dependencies of the system.

The conversion table for Communication diagram is given

in table 3.

Table 3: Conversion table of Communication diagram.

Communication
diagram

Component diagram

Object Component Dependency

Customer Customer Dependency is the interface
requirement of the

components. It is calculated

from the Message
Directions from the

Communication diagram.

ATM ATM

Bank Bank

Table 3 shows the elements of the Communication

diagram on the left side and the elements of the Component

diagram are shown on the right side.

Therefore, it is made clear with the figures and conversion

tables that systematic transformation helps reduces the

inconsistencies and ambiguities between the diagrams.

7. Validation with Cellular Network Case Study

The second case study we have used in our system is a

cellular network. The System only incorporates the Phone and

Message passage between the user and network. The Use-

Case diagram of the system is given in Fig. 6.

M. Rehman et al. / The Nucleus 59, No. 3-4 (2022) 40-47

 46

Fig. 6: Use-Case diagram of Cellular Network.

With the Use-Case diagram and our proposed Algorithm

01, we get the communication diagram in Fig. 7.

Fig. 7: Communication diagram for Cellular Network.

With the communication diagram and our proposed

Algorithm 02, we get the component diagram in Fig. 8.

Fig. 8: Component diagram of Cellular Network.

8. Conclusion

In this paper, we have provided a novel universal

algorithm that converts one UML diagram to another

automatically. This study focuses at converting the Use-Case

diagram into a component diagram. Communication diagram

is chosen as a mid-path. This conversion shows that the gaps

and inconsistencies between the UML diagrams can be

fulfilled if proper procedures are followed for going from one

diagram to another. Similarly, the data flow inconsistencies,

verification and validation problems can also be removed.

The automatic conversions between diagrams in software

engineering will be helpful with the multifaceted system,

where a slight inconsistency in diagram structure will yield

poor effects on the overall behaviour of the system. These

conversions will be helpful in Software testing mechanisms.

The runtime conversions of the case studies have also proven

the point.

In the Future, this study can be enhanced by including

formal specifications of the UML diagrams.

References

[1] B. Padmanabhan, "Unified Modeling Language (UML) Overview",
February, 2012.

[2] I. Jacobson, G. Booch and J. Rumbaugh, “The Unified Modeling

Language Reference Manual”, Addison-Wesley, 1999.

[3] S. Shakil and B. Hazela, "Formalization of UML Class Diagram",

International Journal of Engineering Science and Computing, vol. 6, no.

5, 2016.

[4] A. Kalnins, J. Barzdins and K. Podneiks, “Modeling Languages and

tools: state of the art”, Order 18, no. L12, 2000.

[5] T. Corp., "Tricentis.com" December 2018. [Online]. Available:

https://www.tricentis.com/blog/real-life-examples-of-software-
development-failures/.

[6] A. Jilani, M. Usman and A. Nadeem, “Comparative Study on DFD to
UML Diagrams Transformations”, World of Computer Science and

Information Technology Journal, vol. 1, no. 1, pp. 10-16, 2011.

[7] B. Hnatkowska, Z. Huzar and L. Kuzniarz, "Refinement relationship

between collaborations", Workshop on Consistency Problems in UML-

based Software Development II, 2003.

[8] C. Atkinson and T. Kuhne, "Model driven development: A

metamodeling foundation", IEEE Software, vol. 20, no. 5, pp. 36-41,

2003.

[9] N.A. Zafar, "Formal Specification and Verification of Few Combined
Fragments of UML Sequence Diagram", Arabian Journal for Science

and Engineering, vol. 41, no. 8, pp. 2975-2986, 2016.

[10] S.J. Niepostyn and I. Bluemke, "The Function-Behaviour-Structure

Diagram for Modelling Workflow of Information Systems", Advanced

Information Systems Engineering Workshops, Berlin, Heidelberg,
2012.

[11] G. Spanoudakis and A. Zisman, "Inconsistency Management in
Software Engineering: Survey and open research issues", Handbook of

Software Engineering and knowledge Engineering, vol I, pp. 329-380,

2001.

[12] L. Baresi, MM. Pourhashem and M. Rossi, "Flexible Modular

Formalization of UML Sequence Diagrams", Proceedings of the 2nd
FME Workshop on Formal Methods in Software Engineering, June

2014.

[13] D. Torre, "Verifying the consistency of UML models", IEEE 27th

International Symposium on Software Reliability Engineering

Workshops, Ottawa, Canada, pp. 53-54, 2016.

[14] D. Thomas, "Revenge of the modelers or UML utopia", IEEE Software,

vol 21, no. 3, pp. 15-17, 2004.

[15] M. Nelson and M. Piattini, "A Systematic Literature Review on the

Quality of UML Models", Innovations in database design, web

M. Rehman et al. / The Nucleus 59, No. 3-4 (2022) 40-47

 47

applications and information systems managements, vol. 22, no. 3,

pp. 310-334, 2012.

[16] A. Bucchiarone, J. Cabot and RF. Paige, "Grand Challenges in model-

driven engineering: an analysis of the state of the research", Software
and Systems Modeling, vol 19, no. 1, pp. 5-13, 2020.

[17] D. Moody, "Theoretical and Practical issues in evaluating the quality of
conceptual models: current state and future directions", Data and

knowledge Engineering, vol. 55, no. 3, pp. 243-276, 2005.

[18] M. Genero, M. Piattini and C. Calero, "A survey of metrics for

UML Class Diagrams", Journal of Object Technology, vol. 4, no. 9,

pp. 59-92, 2005.

[19] F.J. Lucas, F. Molina and A. Toval, "A systematic review of UML

Model consistency management", Information and Software
Technology, vol. 51, no. 12, pp. 1631-1645, 2009.

[20] W.Q. Liu, S. Easterbrook and J. Mylopoulos, "Rule-based detection of
inconsistency in UML models", Workshop on Consistency Problems in

UML-Based Software Development, vol. 5, 2002.

[21] E. Astesiano and G. Reggio, "An Algebraic Proposal for Handling UML

Consistency", Workshop on Consistency Problems in UML based

Software Development II, San Francisco, USA, 2003.

[22] Z. Chen and G. Motet, "A Language- Theoretic View on Guidelines and

Consistency Rules of UML", European Conference on Model Driven
Architecture- Foundations and Applications. Springer, 2009.

[23] D. Rajagopal and K. Thilakavalli, "A Study: UML for OOA and OOD",
International Journal of Knowledge Content Development &

Technology, vol. 7, no. 2, pp. 5-20, 2017.

[24] MB. Tuncel, "Using Collaboration Diagrams in Component Oriented

Modeling", MS Thesis, Middle East Technical University, 2006.

[25] M.N. Arifin and D. Siahaan, "Structural and Semantic Similarity

Measurement of UML Use Case Diagram", Lontar Komputer, vol. 11,
no. 2, pp. 88-100, 2020.

[26] M. Elallaoui, K. Nafil and R. Touahni, "Automatic Transformation of
User Stories into UML Use Case Diagrams using NLP Techniques",

Procedia Computer science, vol. 130, pp. 42-49, 2018.

[27] X. Liu, "Identification and check of inconsistencies between UML

diagrams", International Conference on Computer Sciences and

Applications, Luoyang, China, 2013.

[28] H.O. Salami and M. Ahmed, "A framework for reuse of multi-view

UML artifacts", The International Journal of Soft Computing and
Software Engineering, vol. 3, no. 3, pp. 156-162, 2014.

[29] A.D. Marco and R. Mirandola, "Model Transformation in Software
Performance Engineering", in International Conference on the Quality

of Software Architectures, Berlin, Heidelberg, pp. 95-110, 2006.

[30] P. Selonen, K. Koskimies and M. Sakkinen, "Transformations Between

UML Diagrams", International Journal of Database Management, vol.

14, no. 3, pp. 37-55, 2003.

[31] S. Kuske, M. Gogolla and R. Kollmann, "An Integrated Semantics for

UML Class, Object and State diagrams based on Graph
Transformation", International Conference on Integrated Formal

Methods, Springer, Berlin, Heidelberg, pp. 11-28, 2002.

[32] J. Araujo, J. Whittle, A. Toval and R. France, "Integration and

Transformation of UML Models", European Conference on Object

Oriented Programming, Springer, pp. 184-191, 2002.

[33] OM. Group, "Unified Modeling Language Specification Version 2.5.1",
https://www.omg.org/spec/UML/2.5.1/, December 2017.

