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A B S T R A C T 

Efficient multimedia image extraction with high precision compatible with diverse image datasets is an implicit requirement of current image retrieval systems. 

In this paper, a multimedia image descriptor is introduced to achieve high performance along with high accuracy. For this, Histograms of Oriented Gradients 

(HOG) are extracted from a dense grid partitioned image by taking edge intensity based orientation histograms as primitive feature vectors. We depleted 
these massive redundant candidates to linearly uncorrelated variables by applying orthogonal transformation to achieve Principal Components (PC) where 

succeeding component’s constraint dependent orthogonal variance based local descriptors are compact and robust to deformation. A distinctness of our 

proposed approach is the selection of a single coefficient having largest variance as image descriptor out of returned dimensionally reduced vectors which 
results in higher performance and less space and time consumption. Supervised learning using Support Vector Machine (SVM) is then applied on non-

probabilistic binary linear classification of images. The experimental results show higher precision, low memory consumption and sufficient performance 

gain. 

Keywords: Multimedia images retrieval, Histogram of oriented gradients, Principal component analysis, Support vector machine, Dimension reduction, 
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1. Introduction 

Efficient image extraction systems for small and large 

datasets with high precision, prompt response, less space 

and time consumption and high throughput is an inevitable 

requirement of the day. Traditional concept based image 

indexing is tag based which provides non-semantic results 

due to limited context orientation of metadata. Medical 

content based image querying systems extract the images for 

color, shapes, texture, objects etc. and return semantically 

relevant results more accurately. Depending upon visual 

features and domain knowledge for searched contents, 

current Content Based Image Retrieval (CBIR) systems 

fetch relevant results to satiate the searcher. Visual content 

formation is phased for feature processing and feature 

description by modeling minimum invariant conditions 

based on user feedback. Probability distribution estimation 

of quantitative variables is formed in histograms for data 

density estimations of color, shape and texture features. 

Color histogram intersection on multicolored images for 

efficient indexing in a large database [1], correlogram based 

enhanced histograms [2], fuzzy color histograms [3], color 

and shape based retrieval [4] and other variations are used 

for efficient and accurate retrieval. Local and global features 

[5] possess important information for image retrieval. 

Moreover, color distribution has some limitations like global 

color distribution in images is suitable when object and 

region position is not a concern and it fails when object 

detection inside image is required. Shape invariant 

histograms [6], edge histograms for indexing and 

segmentation involve shape contexts for rapid image 

matching but segmentation has weighted graph partitioning 

problem [7]. For region-based feature extraction, image 

segmentation is employed with variations like weighted  

graph partitioning, k-mean clustering and cues of texture and 

contour differences which are computationally complex and 

crucial for image classification within images. To achieve 

high performance and precision, local features detection and 

interest point description; Scale-Invariant Feature 

Transform (SIFT) [8] descriptor was introduced. It is 

invariant to uniform scaling and robust to noise and 

illumination. It also suffers high dimensionality problem. 

Speeded Up Robust Features (SURF) [9] outperforms and 

are reliant on integral images for image convolutions that 

results in low computational time with 64 dimensions to 

reduce feature description calculation time. It has 

comparatively low descriptor variance. Gradient Location-

Orientation Histogram (GLOH) [10] is a variant to SIFT 

whose descriptor size is reduced by PCA. It is limited to fifty 

degrees of affine transformation after which results become 

unreliable. Intensity gradients distribution description of 

shapes in the localized portions of images similar to edge 

orientation histogram is performed by Histogram of 

Oriented Gradients (HOG) [11], which is invariant to 

photometric and geometric transformations. All these local 

descriptors find interest points which are then transformed 

into feature vectors based on extracted gradient, color, 

texture, etc. The number of interest points reveals better 

object classification. Processing time is proportionate to data 

dimensions generated by these descriptors which generate 

hundreds to thousands data dimensions for an image. To 

process it, high computational time, processing power and 

memory space is required. Medical imaging, videos, DNA 

and MRI databases contain highly dimensional data. 

Therefore, generation of up to the mark precision level for 

these bulk feature vectors becomes inaccessible. For 

experimentation, testbed databases usually contain few 

hundreds to thousand images and their results, and 
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computational power vary for large datasets. A tradeoff is 

observed between performance and accuracy for high 

dimensional large datasets.  

Performance enhancement is being studied by many 

researchers and filters, distance measures, dimension 

reduction, segmentation, semantic gap and relevance 

feedback are used to achieve it. In many cases, testbed is 

normally a selective image set [12] or a subset of Corel dataset 

[13-15]. 

Histograms had been used in different ways to achieve 

better performance, efficiency and improve precision. Large 

databases and rapid performance was focused on by Swain 

and Ballard [1] using Histogram intersection on multicolored 

images. They performed quick indexing in a large database 

and Histogram Back-projection to solve location problem 

efficiently. Color histograms with some variations named as 

Color correlogram [2] were used for effective and inexpensive 

retrieval of changed shape images. Histogram calculations 

based on fuzzy sets were employed for inexpensive large 

computations which were robust to noisy interfaces and 

quantization errors [3]. 

Data descriptors SIFT [8], SURF [9], GLOH [10] and 

HOG [11] return high dimensions which result in more space 

and computation time, low performance and scalability 

issues. To compact the feature vectors size, different 

dimension reduction techniques were applied to these 

signatures [16, 17].  High dimensionality of data limits the 

speed and scalability of feature matching that is targeted by 

Kernel Projection Based SIFT (KPB-SIFT) [16] technique 

which encodes the salient aspects of image gradients in the 

feature point's neighborhood and kernel projections to 

orientation gradient patches. Ke and Sukthankar [17] applied 

PCA to normalize gradient patch in PCA-SIFT. On selective 

small dataset, Lu and Little [18] used HOG descriptor for 

athlete images representation and the results were projected to 

linear subspace using PCA for effective and speedy retrieval. 

HOG with PCA was pedestrian dataset [19] for which subset 

is selected for feature reduction with forward or backward 

sampling. HOG with PCA was tested on 3D human posture 

[20] where PCA was applied on every HOG block and 

experimentation results showed that shape context has highest 

RMS (Root-mean-square) error. Human action detections 

from a far field of view [21] are detected using HOG for 

accurate object detection. Supervised Principle Component 

Analysis (SPCA) is applied to obtain informative principle 

components. For this, Support Vector Machine (SVM) 

classifier is trained and tested on selective normal and low 

resolution image datasets. Manifold learning algorithm based 

Locality Preserving Projection (LPP) was used with HOG to 

attain short response time in real time applications [22]. 

Linear LPP algorithm transformation vector results in reduced 

computational complexity and less input descriptor 

redundancies. HOG extraction was performed on local 16×16 

pixel regions and then LPP was used to preserve data 

similarity after projection. MIT CBCL pedestrian database of 

1000 images was used for experimentation and the results 

were better than PCA-SIFT [17]. In a hand gesture 

recognition system, hand images are first transformed into 

grid of HOG and then incremental PCA is applied to obtain 

compact candidates on which particle filter method is applied. 

Results of this scheme are robust to changes and show better 

accuracy [23]. For image extraction in large database located 

at remote server [24], pyramid HOG descriptor is first 

computed on images and then images are encrypted using 

RSA double key algorithm and stored at remote server. It 

causes an overhead for encryption, decryption and 

authentications. 

HOG and LBP are individually used for feature vectors 

production but sometimes their accumulated outcome is 

better. For example, in pedestrian detection, PCA is applied 

to HOG and LBP based extracted feature vectors and then 

reduced HOG and LBP results are combined to retrieve the 

images. Thus PCA-HOG-LBP [25] descriptor improves the 

accuracy but involves in extensive computation. For eye 

detection, PCA is applied, followed by whitening 

transformation on HOG feature sets and then discriminative 

analysis is performed to reduce feature space [26]. 

Experiments on Face Recognition Grand Challenge (FRGC) 

are encouraging. Center-Symmetric Local Binary Pattern 

(CS-LBP) as a feature set is used in combination with 

Histogram of Oriented Gradients for the detection of crow 

birds. Linear Support Vector Machine is used for training, 

testing and better results classification [27]. Based on 

background elimination using statistical features [28], object 

area is filtered using local histogram distribution and then 

trained classifier detects human faces and cars using HOG and 

PCA. Finally, SVM classifies using ROC-AUC parameters. 

This approach has better precision and recall rates. ROI 

(Region of Interest) based method intends to select and 

interact with the relevant area in an image. ROI based shape 

and region extraction is easily performed using edge based 

histogram of oriented gradients. HOG was not applied to the 

whole image [29]. At first, region of interest is determined and 

then HOG is applied to that portion only. Optical flow based 

tracking limits the HOG computation in redundant frames. 

PCA is then applied to reduce feature vectors and proposed 

dynamic ROI selection method minimizes detection time and 

increases accuracy. Fisher criterion and multi-scale method 

[30] was employed to reduce feature space obtained by HOG 

where histogram of oriented gradients were applied to 

selective ROI and support vector machine was adopted to 

classify the results. Experiments showed improved accuracy 

due to selective ROI applicability. 

This paper presents an agile medical image retrieval 

system that initially extracts feature vectors of images using 

local image descriptor by HOG. Secondly, these massive 

signatures are compacted by applying PCA. Thirdly, the 

highest variance based data is projected from first coordinate 

as a sole descriptor. Experimentation is performed to achieve 

high dimension reduction using PCA, performance gain, 

accuracy with low space and time consumption. 

2. Methodology 

Various interest point descriptors SIFT [8], SURF [9], 
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GLOH [10], KPB-SIFT [16], PCA-SIFT [17], LPP-HOG [22] 

and HOG-LBP [25] are used in image processing and 

computer vision for the purposes of object recognition, 

motion estimation and event detection. Local gradients 

orientation density counting is well suited for shape and object 

detection that is employed by HOG [11]. This methodology is 

based on SIFT [8] descriptor with a variation that it is 

performed on a dense grid with well-normalized histograms. 

Practically, an image is sliced into small spatial cells which 

accumulating a local edge orientation over the pixels of the 

cell. Large spatial blocks are used for contrast and 

normalization for better classification. HOG captures edge or 

gradient orientation that is an attribute of local shape and is 

performed at local representation with an easily controllable 

degree of invariance to local geometric and photometric 

transformations as shown in Fig. 1 [11]. 

 

Fig. 1: HOG feature representation in 2×2, 4×4 and 8×8 block sizes. 

            {
𝑓𝑥(𝑥, 𝑦) = 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦)     ∀𝑥, 𝑦

𝑓𝑦(𝑥, 𝑦) = 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1)     ∀𝑥, 𝑦
    (1) 

The strength of gradient m(x, y) is calculated as [11]: 

                     𝑚(𝑥, 𝑦) = √𝑓𝑥(𝑥, 𝑦)2 + 𝑓𝑦(𝑥, 𝑦)2                 (2) 

Edge orientation is calculated using Sobel filter at points x, y 

[11]: 

                           𝜃(𝑥, 𝑦) = 𝑡𝑎𝑛−1 [
𝑓𝑦(𝑥,𝑦)

𝑓𝑥(𝑥,𝑦)
]                          (3) 

Then, for each image gradient cell, unsigned orientation 

𝜃̃(𝑥, 𝑦)  is quantized into orientation bins [11]: 

                     𝜃̃(𝑥, 𝑦) = { 𝜃(𝑥,𝑦)    otherwise
𝜃(𝑥,𝑦) + 𝛱  𝑖𝑓 𝜃(𝑥,𝑦) < 0

    (4) 

For each 4×4 pixels size, cell histogram of edge gradient 

is computed with 8 orientations that results a feature vector 

(v). The feature vectors are computed for each cell and block. 

Normalized feature vector b’
xy for each block is computed as 

[11]: 

             𝑏𝑥𝑦
′ =  

𝑏𝑥𝑦

√‖𝑣⥂‖2
+𝜀

   𝜀 = 1     (5) 

where 𝜀 = 1  and  bxy is unnormalized block histogram of cell 

at position x, y. 

For each 4×4 pixels cell with 8 orientations, 128 (i.e., 

8×4×4) HOG features are extracted as shown in Fig. 2 [11, 31, 32]. 

 

Fig. 2: The proposed descriptor scenario in CBIR system. 

Hence, the feature vectors extraction for all grid locations 

grow from thousands to millions, based on image dimensions. 

These bulk feature vectors are computed for overlapped 

blocks so their produced vectors are redundant and 

unnecessary. These also cause computational overhead, 

performance degradation and greater time and space 

consumption. Therefore, correlated variables need a 

transformation to linearly uncorrelated variables that is 

achieved in principal components. PCA is a useful, simple, 

non-parametric statistical analytical tool using in face 

recognition, image compression and finding patterns in data 

of high dimensions [33]. It is helpful to explore, sort, group 

data and to reveal underlying hidden structures. It also 

quantifies the importance of each dimension and shows total 

variance with a few components without loss of information. 

A smaller database is used because only the trainee images are 

stored in the form of their projections on a reduced basis [34]. 

Principal components for high dimensional feature vectors 

are computed as [31]: 
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      𝑥 = 𝑝𝛵(𝑦𝑖 − 𝑦̄)         (6) 

where covariance matrix is used for the projection matrix p. 

For random vectors X and Y with m-dimensions, the 

covariance matrix is equal to [35]: 

      𝜎(𝑋, 𝑌) = 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])𝑇]         (7) 

where T is transpose and E[X] is mean of vector X. 

Histograms of Oriented Gradient describe the shape and 

appearance of local objects by edge orientations. Histogram 

of gradient directions for all pixels and contrast-normalization 

for each cell within the block generate enormous and 

redundant values having highly dimensional data. For 

example, in Corel data set [36, 37], each image dimension is 

384×256, on which gradient orientation counting in localized 

patterns produce almost 30 thousand values for each image. 

For this dataset, only 100 images computation takes 

remarkable calculation time and space consumption. HOG 

evaluation for thousand images [38-41] in small datasets 

outcome in performance degradation and resource 

consumption. Hence, CBIR using large datasets with SIFT 

and SURF are not workable due to huge, redundant and high 

dimensional data values [42] and same is the case with HOG. 

Therefore, it is an essential requirement to compact HOG 

colossal dimensions without loss of information. PCA [43] 

comes to front as a potential candidate with its key advantages 

like low noise sensitivity, less memory requirements, lack of 

redundancy, reduced complexity and smaller database 

representation [44]. Principal components returned by PCA 

are linearly uncorrelated and less than or equal to input 

observations. We have tested that HOG feature vectors are 

reduced up to more than 400 times by applying PCA. In other 

words, for a single image [36, 37], 30000 HOG feature vector 

values are converted to 60 - 70 principal components. So, for 

a database of 10 - 50000 images with reduced PCA-HOG 

components, considerable saving is achieved in term of time 

and memory consumption. 

It is a challenging requirement for large CBIR systems that 

there should be some slim descriptor to represent an image 

with a few dimensions. It should also be capable to retrieve 

results with enhanced performance and better accuracy. To 

attain this goal, principal components should be selective 

based on some criteria. Stepwise Forward Selection (SFS) 

algorithm or Stepwise Backward Selection (SBS) algorithm 

[19] and other techniques incorporated for generalization 

performance with the aim of principal component subset 

selection. These techniques employ 20 to 100 principal 

components as descriptor candidate. We introduce a novel 

way to represent an image with only one principal component 

value.  

In our proposed method, HOG is first computed for all 

grid locations to extract feature vectors. Signatures extracted 

from all uniformed spaced cells are bulk and performance 

concerned. For large datasets, these huge volume signatures 

and highly dimensional data are then projected to linear 

subspace in compacted principal component form without 

loss of accuracy by applying PCA. These principal 

components are descriptor candidates from which selective 

principal components are chosen. In the present case, one 

dimension is selected to exclusively represent an image 

uniquely. 

The descriptor is used as an input to linear SVM for 

classification. The first PC is selected as a local descriptor 

because it has the largest possible variance [45, 46] that is 

accounted for 71% of variance of almost all data [47]. Only 

first principal component is assumed as a measure of 

economic status [48]. According to Porter et al (46), the first 

principal components can be used to obtain the highest 

variance with providing a compact and more efficient 

description. They experimentally proved on monochromatic 

aberrations of the human eye in a large population data that 

first principal component accounts for over 90% of the 

cumulative variance. Wall et al. [49] observed 90% of 

variance in first two principal components with the result that 

the first principal component contains a strong steady-state 

signal. By Hubert et al. [50], 85% of total variance is 

accounted for first two principal components. 

Principal component factor structure is computed as [31]: 

      𝑆 = 𝑉𝐿
1

2⁄      (8) 

where S is a matrix whose elements are the correlations 

between the principal components and the variables [43]. V is 

premultiplier used in the calculation of transformed variables. 

L is a diagonal matrix with λj in the jth position on the 

diagonal. So the full eigenstructure of correlation matrix R is 

given by Veen [51]: 

             𝑅𝑉 = 𝑉                                        (9) 

         𝑉′𝑉 = 𝑉𝑉′ = 1         (10) 

         𝑉′𝑅𝑉 = 𝐿 = 𝐷𝑦            (11) 

where Dy is diagonal matrix whose all off-diagonal 

elements are zero. Thus orthogonal transformation is 

achieved.  

The working methodology involves the following steps: 

2.1 Selection of Database  

Our algorithm selects some database for the testing and 

training purpose depending upon the connection string path. 

In that database the semantic groups of images are in some 

predefined range. In our case, each image category contains 

hundred images which are next to each other and the next 

image category starts just after the last image of a category. 

2.2 HOG Computation 

HOG is computed on each image and the results are 

temporarily saved in a file before the computation of PCA. 

These results are not saved permanently because each image 

HOG computed value is massive, multidimensional and 

redundant. 

2.3 PCA Computation 

PCA performs simplification, un-mixing, prediction, 

classification, variable selection, outlier detection, modeling 
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and data reduction. HOG [11] is computed for a semantic 

batch of images and PCA is calculated for those images and 

the values are saved in a file. For the next batch of images, the 

same process is repeated until all image categories are 

computed. Numbers of principal components are changed to 

check their impact on computational time, precision and 

recall, memory space consumption and permanent storage file 

size for large databases. 

2.4 SVM Training and Testing 

Support Vector Machine (SVM) performs supervised 

learning by analyzing data and recognizing the hidden 

patterns for classification. Set of n items using linear SVM are 

shown as [32]: 

   𝑇 = {(𝑎𝑥 , 𝑏𝑥)| 𝑎𝑥 ∈ 𝑅𝑖 , 𝑏𝑥 ∈  {−1, 1} }, 𝑥 = 1 … 𝑛   (12) 

where ax is i dimensional real vector and bx is either -1 or 

1 for the training data T. ax belongs to Ri where i represents 

the exponent for which floating values are extracted. These 

values are iterated from 1 to n; where n are the number of 

items used in SVM data set. 

We input training data to SVM with Boolean data labels. 

Data labels show that the respective image belongs to this 

category or not, so that, based on this training data, 

discriminative classification is carried out on test data. 

2.5 Compression and Retrieval Mechanism 

The localized pattern produces massive and redundant 

signatures, for example, a JPEG image with dimension 

384×256 and 25 to 35 KB in size generates 0.55-1.25 million 

values. The proposed method intelligently chooses the 

uncorrelated variables by applying the succeeding 

component’s constraint dependent orthogonal variance. The 

high value of initial few components are the best candidates 

to show the variance. The compact values based large datasets 

are represented by their primary components to retrieve the 

images. Therefore, less comparisons on binary classification 

produces very fast and accurate results based on the potential 

representative coefficients. The large datasets with variety of 

semantic groups save each image with the single coefficient 

with highest variance to represent it uniquely. It is, therefore, 

resulted in quick processing and less space consumption. The 

unique coefficients or a subset of coefficients are classified by 

supervised learning for which the top 20 or any number of 

sorted values based candidates are displayed. 

3. Experimentation 

3.1 Dataset 

Dataset selection, training and testing methodologies 

impact the results precision. The results tested only at a few 

number of images or at small databases outcome differently 

at large databases with diverse image types. For this reason, 

we used two databases. First, a medium size database is for 

training, testing and results precision. The objective is to 

verify the results accuracy along with performance gain, time 

and space consumption. The results are also validated on a 

large database for the space and time consumption. 

There is no standard testbed for CBIR systems, however, 

a Corel database is usually used by researchers due to 

different semantic groups and free availability. Corel datasets 

contain a variety of semantic groups like people, animal, 

flower, texture, food and others. The first dataset is Corel [36, 

37] containing 1000 images in 10 categories as shown in Fig. 

3. All are 384×246 pixel images. 

 

Fig. 3: Corel thousand images dataset 

The second dataset is Corel comprising of 10,000 images 

in 100 categories with 128×85 image size as shown in Fig. 4. 

The categories include butterflies, scenes, buildings, nature, 

sunset, flowers, trees, textures, cars, boats etc. 

 

Fig. 4: Corel ten thousand images dataset. 

3.2 Results and discussions 

3.2.1 Precision and recall evaluation 

Precision is the specificity measure or positive predicted 

values, whereas, recall is the sensitivity measure or true 

positive rate evaluation. Precision and recall are calculated on 

each category of images for small or large databases. These 

results are tested on different sets of training and testing data. 

     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠
    (13) 
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  𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠
    (14) 

3.3 Experimental Results 

Experimentation is performed on Corel dataset of 1000 

images in 10 semantic groups. For this, Intel 1.5 GHz machine 

with 4GB RAM was employed. For training, 38 positive 

images were used for a category and 3 negative samples from 

each of the rest of categories. Precision and recall are 

evaluated for each category by applying positive and negative 

images for training. 

Precision and recall rate are also computed for different 

principal components based descriptors. One principal 

component per image is our slim descriptor as compared to 3, 

5, 10, 50 or 100 principal components to describe an image. 

Principal components from 1 to 100 are tested and the recall 

rates for each number of components are shown in the Figs.  

5-9. It is noted that in all these categories, the slim descriptor 

has the highest recall rate. 

3.3.1 Recall rates 

Recall rates are tested for different number of PCs on 

different image categories and specified sampling rates. Fig.  

5 shows the proposed slim descriptor representing an image 

with highest recall rate. In this experiment, various number of 

PCs are tested for recall rate on all image categories of Corel 

image dataset. 

 

Fig. 5: Recall rates for Corel dataset with 10 categories for the proposed 

descriptor vs. 1-30 PCs. 

Fig. 6 shows the recall rates for the proposed slim descriptor and 

the rest of principal components descriptors. It is evident from 

the figure that the proposed slim descriptor has the highest recall 

rates among all the principal components descriptors in all the 

image categories. This is due to the highest possible variance of 

first principal component among all the data [45-48]. 

Fig. 7 shows the recall rates for the proposed slim descriptor 

for 10 categories of Corel image dataset. The results tested on 

1000 images show that the proposed slim descriptor has 

outstanding performance and significant recall rates. 

 

Fig. 6: Recall rates for Corel dataset for 50-100 PCs vs. the proposed 

descriptor. 

 

Fig. 7: Recall rates for the proposed slim descriptor tested for 10 semantic 

groups of thousand images. 

For these categories, recall rates of other descriptors 

are also evaluated. Fig.  8 shows the recall rates for all 

categories for all descriptors. These results show that our 

proposed descriptor has still the better recall rates as 

compared to other descriptors. In categories 6-9, low 

recall rates using other descriptors can also be observed 

as shown in Figs.  5 and 6. 

Fig. 8 shows the aggregate recall rate for different 

principal components tested on 10 categories of Corel 

images dataset. The results indicate that the recall rate for 

slim descriptor is the highest as compared to different 

number of principal components describing an image. 

Fig. 9 shows the accumulated recall rates in all 10 

semantic groups for the proposed slim descriptor and 

different other descriptors. It is noted that the proposed 

slim descriptor outperforms in accumulated recall rates. 

However, significant difference in recall rates can also be 

observed. These results are produced by performing the 

tests on different image combinations, sampling rates and 

image groups. 



K.T. Ahmed et al. / The Nucleus 57, No. 4 (2020) 118-128 

124 

 

Fig. 8: Recall rate for different PCs using Corel dataset with the proposed 

descriptor. 

 

Fig. 9: Accumulated recall rates for the proposed descriptor vs. PCs. 

3.3.2 Precision 

Precision is evaluated for different image categories using 

different number of principal components. The proposed slim 

descriptor shows better accuracy and retrieval in the dataset 

as is shown in Fig. 10. Precision level of the proposed 

descriptor is remarkable in many categories. It shows a 

tradeoff between improved precision in large number of PCs 

and minor precision gap due to slim descriptor in some cases. 

 

Fig. 10: Precision results using Corel dataset using the proposed descriptor 

vs. different PCs. 

Fig. 11 shows short descriptor precision results. It 

reveals that the proposed slim descriptor shows an overall 

better and accurate retrieval. Similarly, precision rates for  

 

Fig. 11: Precision results of Corel dataset using the proposed descriptor. 

slim descriptor and other descriptors are shown in Fig. 12, 

which indicates that slim descriptor has remarkable 

performance among all possible PCs based combinations. 

This achievement is due to the single coefficient descriptor 

with largest variance. 

Precision of slim descriptor for all 10 categories in 1000 

images database is shown in Fig. 13. Our proposed descriptor 

depicts good performance in all categories. It is also noticed 

that the precision results are reliable for simple object images 

to complex natural scenes and textures. 

 

Fig. 12: Precision rates for all categories of Corel dataset with the proposed 
slim descriptor vs. different PCs. 

 

Fig. 13: Precision rates for all categories of Corel dataset with the proposed 

descriptor. 
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3.3.3 Computation time 

Computation time is a main concern for small and 

especially for large databases. It has an important impact on 

images listing and retrieval from database, HOG computation, 

PCA reduction, SVM training and testing for the number of 

principal components per image and for the total number of 

images. HOG computation returns a massive and highly 

dimensional data for each image. Fig. 14 shows the 

calculation time for HOG values plus the aggregate 

computation time for the various number of principal 

components. From these results we note that computational 

time increases proportionally as the numbers of principal 

component increase. From the results, it is very much clear 

that the proposed descriptor not only exhibits reliable 

precision and recall rates but also minimizes the computation 

time. 

 

Fig. 14: HOG and PCA computation time for the number of principal 
components. 

 

Fig. 15: HOG and PCA computation time for the number of principal 

components. 

HOG and PCA computation time for all categories with 

all descriptor sizes are shown in Fig. 15. The proposed 

descriptor shows the lowest computation time which confirms 

the best precision and recall rates. From these results, it is 

clear that the proposed descriptor outperforms for small, 

medium and large databases. 

3.3.4 Data formation time 

Prior to compute HOG, images data is formulated with 

labels for the purpose of training. These steps take considerable 

 

Fig. 16: Data formation, listing and labeling etc. time consumed by 

descriptors 

computation time. Fig. 16 shows the calculation and 

evaluation time. The proposed descriptor performs well in all 

image categories.  It means that the intermediate steps time 

consumption for proposed descriptor is less as compared to 

other tested descriptors. 

 

Fig. 17: Accumulated training time for proposed descriptor and other 

descriptors. 

3.3.5  Training time 

Training time for all image categories for the proposed and 

other descriptors is shown in Fig. 17, which illustrates that the 

proposed descriptor has the least training time due to its slim 

size. A single PC value represents an image thus training is 

performed for a very few values. 

3.3.6  Memory consumption 

Memory space consumption plays an important role 

especially in large databases. The large data associated with 

an image is required to be processed and stored permanently. 

Intermediate processing steps need paging and data transfer 

tasks. Bulk data image representation cause massive memory 

resources in large databases. 

Fig. 18 shows memory space consumption to store image 

data on permanent storage for small, medium and large 

databases. It is observed that, the proposed descriptor needs 

very small storage for small, medium and large databases as 

compared to other descriptor sizes. 
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Fig. 18: Storage used by different sizes of databases using different 

descriptor sizes. 

The space consumption in small database with respect to 

different sizes of descriptors is also shown in Fig. 19. It is 

clear that the proposed descriptor consumes very small space 

as compared to big descriptors. For large database, the impact 

of large descriptor size is given in Fig. 20, which illustrates a 

difference in database sizes for large content based image 

retrieval system. 

 

Fig. 19: Memory space consumed by proposed descriptor and other 

descriptors. 

3.3.7 Comparison with benchmark descriptors 

Proposed descriptor is evaluated experimentally with 

existing standardized descriptors. The performance 

parameters like precision, recall rates, performance gain, 

storage and time consumption are studied for PCA-SIFT [17], 

PCA-HOG and kernel PCA HOG [52] versus the proposed 

descriptor. The results are extracted by conducting the 

experimentation on Corel 1000 images dataset. PCA-SIFT 

algorithm [13], Kernel PCA and the proposed descriptor are 

implemented at current testing framework. Fig. 21 depicts the 

recall rates of the proposed descriptor with respect to PCA-

HOG, PCA-SIFT and kernel PCA-HOG. 

It can be observed that the recall rates for the proposed 

descriptor are too high in all benchmarks in all image 

categories. 

 

 

Fig. 20: Space consumption with large database for different descriptors. 

 

Fig. 21: Recall rates for the proposed descriptor versus benchmark 
descriptors. 

Fig. 22 shows the precision rates for the descriptors. All 

the descriptors show good precision results. The proposed 

descriptor has a small precision tradeoff due to its ultra slim 

size that uniquely represent an image while PCA-HOG, PCA-

SIFT and kPCA-HOG contain 250, 109 and 144 values for 

each image representation, respectively.  

 

Fig. 22: Recall rates for the proposed descriptor versus benchmarks 

descriptors. 
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Feature vectors calculation, training and testing times are 

shown in Fig. 23.  Due to its size, the proposed descriptor has 

very low signature extraction, training and testing time. For 

the same dataset, other benchmarks take comparatively more 

time due to descriptor length. It has a direct impact on large 

databases with millions of images where the proposed 

descriptor shows outstanding performance due to its less 

feature extraction, training, testing and searching times. 

 

Fig. 23: Feature extraction, training, classification and searching time 
aggregated for proposed descriptor, PCA-HOG, PCA-SIFT and 

kPCA-HOG using Corel image dataset. 

Descriptor size is directly proportional to storage 

consumption. Fig. 24 shows the storage consumed by 

different descriptors for Corel dataset. Image descriptor 

storage consumption with proposed descriptor is hundred to 

thousand times less than the existing benchmarks. It can be 

observed that the proposed slim descriptor has efficient and 

accurate image retrieval results with low space and time 

consumption. 

 

Fig. 24: Corel 1000 images dataset storage used by different descriptors 

versus proposed descriptor. 

4. Conclusions 

In this paper, a novel slim descriptor for fast and reliable 

image retrieval has been presented. This descriptor is capable 

of producing reliable results at low cost of time and space. The 

performance of the proposed descriptor has been evaluated 

with different datasets. As a result, the proposed descriptor 

shows better precision and recall rates as compared to other 

descriptors. The significant performance has been gained and 

efficient image retrieval with good accuracy has also been 

achieved. 
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