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Trajectory tracking means to follow the path or trajectory of a moving object. Trajectory tracking finds application in 
various fields of war and peace. The location of the object can be represented by its rectangular as well as spherical 
coordinates. The system performing the task was a prototype model of an anti aircraft gun. To point the target by the 
gun we needed to track only the two spherical coordinates of its position i.e. the angle of azimuth and the vertical angle. 
To be in coherence with the object, the knowledge of future position was required in advance. However it was not 
possible to have this knowledge. Good estimates of the future positions could be made from the knowledge of motion so 
far of the object, thus a good estimation technique was required. The estimation techniques used here included 
conventional numerical techniques and modern adaptive filtering techniques as well. The paper is based only upon the 
results of estimation techniques applied. For discussion, only the results for the angle of azimuth are used in the paper. 
Conventional numerical techniques were found suitable when the object to be tracked moves with smaller degree of 
non-linearity in its motion and at the transients in terms of error magnitude but are poorer in terms of computing time 
and steady state error reduction. The adaptive filtering techniques on the other hand are poorer in transient error 
magnitude but are good in terms of computing time and steady state error reduction. 
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1. Introduction 

The project was to make use of computer to 
automize the trajectory tracking of moving objects. 
The moving object follows a trajectory that is not 
predefined for the system that is trying to track it. It 
needs a well-equipped data acquisition system for 
sensing its current position, a sophisticated 
algorithm to predict its future position and then a 
control mechanism to reach the predicted position 
in coherence with the object. 

Trajectory tracking finds its application in so 
many areas. For example, to automize a movie 
camera to automatically focus some particular 
object needs to first recognize and secondly track 
the trajectory of the object. The second phase is 
one of the applications of the project. Another field 
of the project is air defense where to encounter the 
intruding enemy aircrafts, anti aircraft guns are 
used. To decrease the error and enhance the 
efficiency of these guns, they can be automized 
through computers which may control the gun to 
track the trajectory of the intruding air craft. 
Another area of the applications of the project is 
the modern robotic industry. An intelligent robot 
design may also need to sense some moving 

object, to know/understand its motion and to follow 
or catch the object. To design such a robot it 
requires including trajectory tracking of the object 
so as to provide the feature of following the moving 
object. 

The task of trajectory tracking was 

accomplished by controlling the two angles  

(azimuth) and  (vertical) of a model of anti-aircraft 
gun using digital PID (Proportional-Integral-
Derivative) controllers. Tracking the two angles 
leads the model to focus the object during its 
motion. 

The overall system used in the project was a 
sort of embedded control systems. Embedded 
control systems are one of the important areas in 
control engineering. Basically an embedded 
control system consists of three important 
components. 

1. Master Controller, which in our system was a 
PC, which decides or receives the desired 
trajectory parameter and PID coefficients from 
user and supplies them to the slave controller. 

2. Slave Controller, which was a control card 
consisting of two separate digital PID 
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controllers for the two angles. The control card 
had a serial communication link with the PC. 

3. Plant, a model consisting of two motors driving 

two separate gears to track the two angles  

(azimuth) and  (vertical). 

Figure 1 shows the block diagram of the 
complete system. There are three loops in the 
system. The first, the outer loop is the master loop 
taking in the input data points as the reference 
signal and the position as output. The output 
(position) is compared with the desired position 
and the error (desired position minus actual current 

position obtained by the block shown as  in figure 
1) is provided to PC which generates the required 
velocity signal for next sample. The two inner loops 
on the other hand have required velocity as the 
reference signal from master controller (through 
the 8051 microcontroller) and have the actual 
velocity as the output. The sampling time in the 
outer loop is larger and is maintained to 1 second 
by MATLAB clock. The inner loops have a 
sampling time equal to 1.024 milliseconds 
maintained through operating frequency of LM628 
precision motion controllers [6] provided by the 
quartz crystal. 

2. Simulation of Moving Object 

A problem with us was that we did not have any 
physical object available for the trajectory tracking 
so it was needed to be simulated through some 
mean. For this purpose the MATLAB function 
ODE45 was used. The function is very much useful 

to solve the state space for a particular time span 
with certain initial conditions. Since the moving 
target can be represented in state space with 
position, velocity and acceleration as the state 
variables, the function can be used to generate the 
position at specific times. Since for a physical 
object the motion is always continuous, the data 
points generated with the above method has been 
made to match closely to a physical object. The 
motion of a physical object may be with constant 
position, constant velocity or at most with constant 
acceleration. If at some instant the acceleration 
changes, it will most probably change at a constant 
rate and will remain constant for a certain period 
after change. Keeping the above facts in mind, a 
4th order differential equation as 
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with the state variables 

x1 = position 

x2 = velocity 

x3 = acceleration & 

x4 = rate of change of acceleration  

 

Figure 1. Block diagram of the system. 
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can represent a physical object. The state space 
can be represented as 

X’ = A X + B     (2) 

Where, 
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Equation 2 was defined in the function m file 
(standard type of files to write programs in 
MATLAB) to be used by the ODE45 a built in 
function of MATLAB to solve ordinary differential 
equation by Rangi Kuta method 45). Calling the 
ODE45 with this function m file as ODEFUN results 
in a matrix whose columns represent position, 
velocity, acceleration and its rate of change 
respectively. Choosing the first column of this 
matrix provided a sequence of data points for 
position. The approach was applied to the three 
axes (X, Y & Z) separately to generate the 
Cartesian coordinates of the position. The motion 
in any dimension could be simulated with constant 
position, velocity or acceleration by providing all 
the higher state variables (for example velocity, 
acceleration and rate of change of acceleration for 
constant position, or acceleration and its rate of 
change for constant velocity or rate of change of 
acceleration for constant acceleration) equal to 
zero initially. A change in the motion was produced 
at any time by first generating the data points upto 
that instant and then introducing the current states 
with the required change as initial conditions for 
next generation. The sequence Cartesian 
coordinates of points of trajectory were returned as 
x, y and z vectors. These were converted into 
spherical coordinates to get the angle of azimuth 

and the vertical angles  &   respectively, for 
tracking. Tracking the angles was performed in a 
loop repeatedly taking in the Cartesian coordinates 

of data points, calculating the  &  for current and 
future position and supplying the desired trajectory 
parameters to the slave controllers for tracking. 

3. Theory of Operation 

The main areas of the project include the 
estimation of position of object at the next sampling 
instant and tuning the digital PID filter. Tuning of 
PID filter is trivial and thus is omitted from the 
discussion. The paper emphasizes only upon the 

results obtained from the use of various estimation 
techniques. 

We wished our system to track the object in 
coherence with it for which we needed the 
knowledge of the position of the moving object at 
the next sampling instant. Since we didn’t have 
any future vision capability so that we may know 
the future position thus we had to apply some 
appropriate estimation technique to achieve close 
estimations for good results. As the estimates 
would be closed, the more accurate the tracking 
would be. For the estimation of future positions, we 
have used following two types of techniques in the 
project: 

3.1. Curve fitting or polynomial approximation 
techniques 

Curve fitting or polynomial approximation 
techniques are classical approaches for the 
estimation of the function value at different points 
where the actual value is unknown. This is made 
by approximating a polynomial on the known 
values of function. The curve fitting techniques are 
based upon the ‘Weierstrass Approximation 
Theorem’ [1]. According to the theorem 

“If f is defined and continuous on [a, b], and 

>0 is given, then there exists a polynomial P, 

defined on [a, b] with the property that 

|f(x) – P(x)| <   for all x  [a, b]” 

If the function value is approximated within the 
region [a, b], the method of approximation is called 
Interpolation and if the value is approximated at a 
point before a or beyond b, the approximation is 
called Extrapolation [1]. Since we always used the 
techniques for the time instants of future, we 
performed extrapolation. There are a number of 
methods for curve fitting. We have used the 
following in our project for estimation. 

3.1.1. Lagrange polynomial 

Lagrange polynomial uses the data points 
known to find the polynomial coefficients. Once the 
coefficients are estimated, the function value at 
any point can be approximated from the polynomial 
[1, 2]. 

For the implementation of Lagrange Polynomial 
Approximation, a function was developed in 
MATLAB. The function returns a polynomial of 
order provided as the input argument from the data 
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points supplied. The coefficients of the polynomial 
are returned which can be used to approximate the 
function value at any point using POLYVAL ( ), the 
built in function of MATLAB. 

3.1.2. Least square estimation 

The Least Square Estimation method is usually 
implemented upon the data acquired by the 
sensors for their calibration. It is used to fit a best 
curve to the response of the sensors as the 
measurement values may have errors included in 
them. The criterion for the best fitting is 
“minimization of the sum of the squares of the 
errors”. In addition to giving a unique result for a 
given set of data, the least squares method is also 
in accord with the maximum likelihood principle in 
statistics. If the data is linear, the first-degree 
polynomial is sufficient to fit but in many cases the 
data obtained is non-linear so we need to fit them 
some function other than the first-degree 
polynomial. Because polynomials can be readily 
manipulated, fitting such functions to data that do 
not plot linearly is common [2].  

To implement the least square estimation in the 
programming in MATLAB the built in function 
POLYFIT( ) has been used which determines the 
coefficients of the required degree polynomial 
through Least Square Estimation. Once obtaining 
the coefficients, the function POLYVAL( ) can be 
used to find the approximation of function at any 
point. 

3.2. Estimation using adaptive filtering 
techniques 

An adaptive filter has an adaptation algorithm 
that is meant to monitor the environment and vary 
the filter transfer function accordingly. The 
algorithm starts from a set of initial conditions, that 
may correspond to complete ignorance about the 
environment, and, based in the actual signals 
received, attempts to find the optimum filter design 
[3]. In a stationary environment, the filter is 
expected to converge to the Wiener filter. In a non-
stationary environment, the filter is expected to 
track time variations and vary its filter coefficients 
accordingly. As a result, there is no such thing as a 
unique optimal solution to the adaptive filtering 
problem. Adaptive filters have to do without a priori 
statistical information, but instead usually have to 
draw all their information from only one given 
realization of the process, i.e. one sequence of 
time samples. Nevertheless, there are then many 
options as to what information is extracted, how it 
is gathered, and how it is used in the algorithm. In 

the stationary case, for example, ergodicity may be 
invoked to compute the signal statistics through 
time averaging. Time averaging obviously is no 
longer a useful tool in a non-stationary 
environment. Given only one realization of the 
process, the adaptation algorithm will have to 
operate with ‘instantaneous’ estimates of the signal 
statistics. Again, such estimates may be obtained 
in various ways. Therefore, we have a ‘kit of tools’ 
rather than a unique solution. This results in a 
variety of algorithms. Each alternative algorithm 
offers desirable features of its own. A selection has 
been taken from the wealth of adaptive filtering 
algorithms developed in the literature. 

A pragmatic choice is to use an FIR filter (Finite 
Impulse Response filter), where the filter output is 
formed as a linear combination of delayed input 
samples, i.e.  

yk =  w0uk +w1uk1+ w2 uk+· · · + wN1ukN + 1    

(3) 

with yk the filter output at time k, wi, i = 0………N - 
1 the filter weights (to be ‘adapted’) and uk the filter 
input at time k, as shown in figure 2.  

This choice leads to tractable mathematics and 
fairly simple algorithms. In particular, the 
optimization problem can be made to have a cost 
function with a single turning point (unimodal). 
Thus any algorithm that locates a minimum, say, is 
guaranteed to have located the global minimum. 
Furthermore the resulting filter is unconditionally 
stable [3]. 

The generalization to adaptive IIR (Infinite 
Impulse Response) filters is nontrivial, for it leads 
to stability problems as well as non-unimodal 
optimization problems so we concentrated on 
adaptive FIR filter algorithms [3].  

3.2.1. Prediction 

In many applications, it is desirable to construct 
the desired signal from the filter input signal, for 
example consider 

dk = uk + 1     (4) 

with dk the desired signal at time k. This is referred 
to as the forward linear prediction problem, i.e. we 
try to predict one time step forward in time. When  

dk = uk - N…     (5) 
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we have the backward linear prediction problem. If 

ek is the error signal at time k, one then has (for 
forward linear prediction) 

ek = uk+1 - w0  uk - w1·uk-1 -· · ·wN - 1·uk-N+1     (6) 

or 

uk+1 = ek +w0  uk + w1 uk-1+ …..+wN1 uk-+1     (7) 

This represents a so-called autoregressive (AR) 
model of the input signal uk+1 (similar equations 
hold for backward linear prediction) [3]. 

Figure 3 shows how the filter weights are 
updated. To predict the position at next sampling 
instant for our desired task of trajectory tracking, 
an estimate of the current value was estimated 
with the current weights and the positions acquired 
up to the previous instant (present position delayed 

one instant by delay element ). The estimate is 

then compared with the actual position acquired at 
the current instant that acts as the desired signal 

here. The error (found as actual current position 

minus the estimate by the block labeled ) was 
then used to modify the weights and the estimate 
for the position at next sampling instant was 
calculated with the modified weights and the 
positions acquired up to the current instant. 

3.3. The recursive least square (RLS) predictors 

RLS, typically exponentially weighted (EW-
RLS), is a commonly considered adaptive Wiener 
technique. Adaptive prediction with RLS has been 
analyzed for zero bandwidth [4] and finite 
bandwidth [5] chirped signals. These previous 
results consider the performance of RLS for 
prediction and identification problems in non-
stationary environments with simple models 
defined by a single parameter and static or 
deterministically time-variant receive vector 
autocorrelation matrix. These models do not apply 
to the interference canceling problem 
characterizing a receive antenna array in 
communications, and such closed-form tracking 

Figure 2.  Prototype adaptive FIR filtering scheme (redrawn from [3]) . 
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analyses cannot be found for the interference 
canceling problem. 

4. Experiments and Results 

To achieve the trajectory tracking with the 
estimate of next position, we operated the system 
to move in velocity mode. With the difference in the 
current position of the system and the estimate of 
position of the object for next sampling instant, the 
required velocity to reach the estimated position in 
coherence with the object can be calculated and 
provided to the system to move with. The other 
mode of operation is the position mode. In this 
mode the system could be operated to attain the 
future positions by directly providing the position to 
the controller. This may result in the system to stop 
at the desired position in some cases. To track for 
the next position, the system would then have to 
start from rest, and thus there would be jerks in 
motion and greater torque required because of 
inertia. The approach of using velocity mode 
provided good results. The system showed a 
smooth motion and tracked the object at almost 
every sampling instant except the instants where 
the object suddenly changed the behavior of its 
motion as the estimates diverted more from the 
actual position at these instants because the 
estimation uses previous behaviour of motion for 
the guess and a change in motion caused the 
guess to be wrong. 

The estimation techniques discussed above 
were applied to the system to estimate the future 
positions. Since the spherical coordinates are 
highly non linear being sin-1 and cos-1 functions of 

the Cartesian coordinates and therefore, need 
polynomials of very high degree to fit, thus are 
expensive in terms of time. Thus, to apply the 
conventional numerical techniques, we chose the 
Cartesian coordinates of the position to be 
estimated rather than the spherical coordinates. 
The Cartesian coordinates were then converted to 

 and  two of the spherical coordinates. Since a 
physical object moves with either a constant 
velocity or constant acceleration and can only 
change the motion in a continuous fashion, we 
considered the extreme case when the movement 
may be with an acceleration varying with a 
constant rate of change which will be closely 
approximated with at most a fourth degree 
polynomial. In case of adaptive predictors the 
technique was applied directly to the two spherical 

coordinates  and . Since the angular motion is 
also usually continuous so the estimation 
technique was applied to the angular positions as 
the filters are applicable also for highly nonlinear 
data as well as data with smaller degree of 
nonlinearity. 

Figures 4 to 10 reflect the results from the 
implementation of these techniques to the system 
for trajectory tracking. In all these figures, the 
points marked as ‘*’ are the actual positions of the 
moving object. The points marked as ‘+’ are the 
estimates of the position of object at the next 
sampling instant. The points marked as ‘o’ are the 
positions obtained by the system tracking the 
object. 

Figure 3. Updating weights for adaptive prediction  

X(k-1) X(k) 

e (k) 
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Figure 4. Angle of azimuth obtained through lagrange polynomial of 2nd degree . 
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Figure 5.  Angle of azimuth obtained through lagrange polynomial of 4th degree. 
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Figure 7. Angle of azimuth obtained through least square estimation with 4th degree polynomial. 
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Figure 6.  Angle of azimuth obtained through lest square estimation with 2nd degree polynomial. 
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Figure 8.  Angle of azimuth obtained through RLS predictor of order 1. 
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Figure 9.  Angle of azimuth obtained through RLS predictor of order 2. 
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5. Discussion 

Looking at the results we see that the Lagrange 
Polynomials work well as long as the object moves 
with a constant fashion but start missing at the 
instants where the object changes its behavior of 
motion and takes time to come back to the original 
trajectory. Also since there is  no check or measure 
to minimize the error, the estimates are not very 
much closed to the original trajectory. 

The polynomial fitted through Least Square 
Estimation tries to best fit the curve to the motion 
and gets closer estimates by minimizing the least 
square error. As a result the Least Square 
Estimation provides good estimates as compared 
to the Lagrange Polynomials. The estimates are 
much closed to the actual trajectory as long as the 
object does not change its behavior of motion. At 
the time the behavior of motion changes there is 
slight missing of the estimates from the actual 
trajectory. In case of the 4th degree polynomial, the 
error is larger and the estimates miss the original 
trajectory for a time longer than that in case of the 
2nd order polynomial. This is because the 4th 
order polynomial uses more points from the 
previous behavior and uses them for a longer time 
as compared to the 2nd order polynomial. 

The RLS predictors also provide good results 
after they got tuned up. Looking at the results we 
see that the 2nd order predictor provides good 
prediction as compared to the 1st and 3rd order 
predictors. We see that the estimates are closed to 
the original trajectory as long as the motion has an 
unchanged behavior. At the instants where the 
fashion changes the predictors start missing the 
actual trajectory. Looking at the results we see that 
at the instants where a change occurs in motion, 
the higher order predictors estimate more away 
from the actual trajectory as compared to the lower 
order predictor but come back sooner to the 
original trajectory. Of the three predictors used, the 
second order filter has been found to be fastest in 
coming back to the original trajectory whereas the 
error value for it is between those for the 1st and 3rd 
order filters. This is because of the fact that the 
second order filter used less number of previous 
points than the 3rd order filter so the error is smaller 
than the 3rd order predictor but is larger than the 
first order predictor as the 1st order predictor uses 
lesser number of previous points. The faster 
recovery of the 2nd order predictor to the original 
trajectory is due to the fact that it uses only two 
points to predict the next instant position. When 
the behavior of motion changes, it gets misguided 
for an instant but at the very next instant it takes 

Figure 10.      Angle of azimuth obtained through RLS predictor of order 3. 

Time(s) 

o 
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both the points it uses from the new fashion. Thus 
comes back to the original trajectory. The 3rd order 
predictor on the other hand uses 3 points so it 
misses the original trajectory for a longer time with 
a larger error. Here we put some limit to the 
velocity so as to avoid the complete misguide of 
the tracking system. As a result the system does 
not go to track the points very far away from the 
current trajectory it was tracking as shown near the 
time instant 20-23 in figure 10.   

6. Conclusions 

From the above discussion it is reflected that 
the estimation through the conventional numerical 
techniques as well as those through the adaptive 
estimators have been found working well and have 
merits and demerits of their own. Using the 
conventional numerical techniques is helpful when 
the object moves with small variation in the 
behaviour of its motion. The degree of polynomial 
is a choice between high and low degrees 
depending upon the nature of the motion of the 
object. An object moving with high degree of 
nonlinearity in its motion can be tracked by using a 
higher degree polynomial approximation where as 
the object moving with lower degree of nonlinearity 
in the motion should be tracked with the estimates 
from a smaller degree polynomial estimation so as 
to avoid the misestimates due to the use of more 
previous values at the instants of sudden changes 
in the behaviour of motion of the object and to 
save the time. Between the two methods of 
polynomial interpolation techniques we found the 
Least Square Estimation technique much better 
due to best fitting the curve. Also if there are 
chances of error in data acquisition, the least 
square estimation will be a good choice over the 
Lagrange polynomial approximation. The adaptive 
predictors on the other hand are good too, if larger 
error can be tolerated for the sake of quicker return 
to the original trajectory if misestimates occur due 
to change in motion. The choice of the order of the 
predictor filter will again depend upon the tolerance 
for the error and delay time in coming back to the 
original trajectory. In case of lower order filter the 
diversion from the actual trajectory is smaller than 
higher order predictors but the delay in coming 
back is larger. Thus smaller order filters should be 

applied where delay is tolerable over diversion and 
vice versa. Since the adaptive predictors directly 

estimate the two angles  and  the technique is 
economic in time as less computation is required 
because only two quantities are estimated and 
also only one conversion from estimated Cartesian 
coordinates to spherical coordinates is required for 
current position and not for the predicted one 
whereas with numerical techniques we needed to 
predict three Cartesian coordinates and two 
conversions from Cartesian to spherical 
coordinates (i.e. for both the actual and the 
predicted positions). However if the time cost is 
less important then the error, the Polynomial fitted 
through the Least Square Estimation is the best 
approach over the adaptive predictors due to the 
tune up delays for the adaptive predictors at the 
instant of changes. 
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