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This work is concerned with the magnetohydrodynamic (MHD) viscous flow due to a porous stretching sheet. The 
similarity solution of the problem is obtained using finite element method. The physical quantities of interest like the fluid 
velocity and skin friction coefficient is obtained and discussed under the influence of suction parameter and Hartman 
number. It is evident from the results that MHD can be used to control the boundary layer thickness. 
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1. Introduction 

The boundary layer viscous flow induced by 
stretching surface moving with a certain velocity in 
an otherwise quiescent fluid medium often occurs 
in several engineering processes. Such flows have 
promising applications in industries, for example in 
the extrusion of a polymer sheet from a die or in 
the drawing of plastic films. During the 
manufacture of these sheets, the melt issues from 
a slit and is subsequently stretched to achieve the 
desired thickness. The mechanical properties of 
the final product strictly depend on the stretching 
and cooling rates in the process. 

Since the pioneering work of Sakiadis [1,2] 
various aspects of boundary layer flow due to a 
stretching sheet have been investigated by several 
workers in the field. Specifically Crane's problem 
[3] for flow of an incompressible viscous fluid past 
a stretching sheet has become a classic in the 
literature. It admits an exact analytical solution. 
Besides it has produced a galore of associated 
problems, each incorporating a new effect and still 
giving an exact solution. The uniqueness of the 
exact analytical solution presented in [3] is 
discussed by McLeod and Rajagopal [4]. Gupta 
and Gupta [5] examined the stretching flow subject 
to suction or injection. The flow inside a stretching 
channel or tube has been analyzed by Brady and 
Acrivos [6] and the flow outside the stretching tube 
by Wang [7]. In another paper, Wang [8] extended 
the flow analysis to the three-dimensional axis 
symmetric stretching surface. The unsteady flow 
induced by a stretching film has been also 
discussed by Wang [9] and Usha and Sridharan 
[10]. 

The objective of the present paper is to obtain a 
numerical solution using finite element method for 
MHD flow over a porous stretching sheet. The 
paper is organized as follows: 

Section 2 contains the mathematical 
formulation of the problem. The numerical solution 
using finite element method is presented in section 
3. Section 4 contains the analysis of results and 
their discussions. In section 5 we have included 
some concluding remarks. 

2. Mathematical Formulation 

In Cartesian coordinates the continuity and 
momentum equations for two-dimensional MHD 
viscous flow are 
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where  /  is the kinematic viscosity and   is 

the electrical conductivity. We have applied the 

magnetic field  0B   in the  z  -direction and the 

induced magnetic field is neglected. The above 
equations are derived by considering the zero 
electric field and incorporating the small magnetic 
Reynold number assumption. Under the usual 
boundary layer approximations the flow is 
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governed by the continuity equation equation (1) 
and the momentum equation takes the following 
form : 
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in the above equation we have neglected the 
pressure gradient because the flow is caused only 
due to the stretching of the sheet. 

The boundary conditions applicable to the present 
flow are  

.y  as                     0u

,0y  at   Wv    ,axu





     (5) 

in which  0a    is the stretching constant,  W   is 

the suction velocity. Defining 

    .y
a

      ,fav      ,faxu

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     (6) 

Equation (1) is identically satisfied and Eqs. (4) 
and (5) becomes 

,0ffffMf 22  

     (7) 

 

,0  at    1f    ,sf   

,    as    0f       (8) 

where   am/Ws  and a/BM 2
0

2  . 

3. Finite Element Method 

The finite element method has been employed 
for the solution of this non-linear differential 
equation. Finite element method is a well 
developed numerical technique for obtaining 
approximate solutions to a wide variety of linear or 
non-linear differential equations arising in 
engineering and mathematical physics. In finite 
element method, a given boundary value problem 
is first transformed into a weak form or variational 
form. A weak form is a weighted integral statement 
of a differential equation in which the differentiation 
is distributed among the dependent variable and 
the weight function or test function, and includes 
the natural boundary conditions of the problem. 
The weak formulation has two desirable 
characteristics. First, it requires weaker continuity 
of the dependent variable by distributing the 
differentiation between the solution and the weight 
function w  (due to its weaker requirement of 

continuity, it has been given the name weak form). 
Second, the natural boundary conditions of the 
problem are included in the weak form, and the 
solution is required to satisfy only the essential 
boundary conditions of the problem. Whenever, 
the classical solution exists it coincides with the 
weak solution of the problem. 

In this method the continuous physical model or 
domain is divided into finite number of smaller 
elements/sub-domains which is called 
discretization. The domain for the boundary value 
problem is viewed as an assemblage of these sub-
domains usually known as finite element 
mesh/grid. The points at which these elements are 
connected are called nodes or nodal points. An 
approximate solution is then computed on these 
node points. 

Instead of solving the problem for the entire 
domain in one step, attention is mainly devoted to 
the formulation of the properties of the constituent 
elements. A standard element is selected from the 
mesh and then finite element formulation is 
constructed for this element. Results are 
recombined to represent the whole domain/mesh. 
Since these elements can be put together in a 
variety of ways, they can be used to represent very 
complex domain shapes. The mesh consists of line 
segments in one dimension, in two dimensions it 
may consist of triangles or quadrilaterals and in 
three dimensions it may consist of tetrahedra or 
hexahedra. All these are known as finite elements 
or simply elements. 

A variety of element shapes may be used and 
with care different element shapes may be 
employed in the same solution region. If we 

partition the domain     into a finite number E of 

elements 1 , 2 ,..., E , then these elements 

should be non overlapping and cover the domain  
  in the sense that,  
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     (9) 

The number and the type of elements to be 
used in a given problem are matters of 
mathematical or engineering judgment. 

The finite element method works by expressing 
the unknown field variable in terms of assumed 
approximating functions within each element. The 
approximating functions (sometimes called 
interpolation functions) are defined in terms of 
linear combinations of algebraic polynomials called 
basis functions and the values of the field variables 
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at node points. The nodal values of the field 
variable and the basis functions for the elements 
completely define the behavior of the field variable 
within the elements. For the finite element 
representation of a problem the nodal values of the 
field variable become unknowns to be determined. 

A finite element approximate solution is of the 
type,  

,uU ii

N

1i

h 
  (10) 

where iu  are solution values at the node points to 

be determined and i  are chosen approximating 

functions. 

The choice of algebraic polynomials as a basis 
function has two reasons. First the interpolation 
theory of numerical analysis can be used to 
develop the approximate functions systematically 
over an element. Second, numerical evaluation of 
integrals of algebraic polynomials is easy. The 
degree of the polynomial chosen depends on the 
number of nodes assigned to the element, the 
nature and number of unknowns at each node and 
certain continuity requirements imposed at the 
nodes and along the element boundaries. For 
example, in two dimensions on triangles the field 
variables may be approximated by linear 

polynomials  yxp 321   , with three nodes 

at the vertices of the triangle or by quadratic 
polynomials  

2
65

2
4321 yxyxyxp   , with six 

nodes, three at the vertices and three at the mid 

points of the triangle edges. Basis functions  i   

have the following properties. 

1. The functions  i   are bounded and continuous, 

that is,  ).(Ci    

2. The total number of basis functions is equal to 
the number of nodes present in the mesh and 

each function  i   is nonzero only on those 

elements that are connected to node  i  :  

0|)( e
xi   if  ei   . 

3.  i   is equal to 1 at node i, and equal to zero at 

the other nodes, 


 
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.otherwise0

jiif1
)x( ji  

In Galerkin approach the approximate solution 
of original problem for an element is sought by 
choosing test/weight function equivalent to the 

basis function for that element. On substituting the 
approximate finite element solution in the weak 
form we get the algebraic element equations. This 
yields a large set of simultaneous algebraic 
equations. After imposing the essential and natural 
boundary conditions the problem is thus reduced 
to one of solving the set of simultaneous equations 
where the number of equations is equal to the 
number of nodes at which the solution is required. 
In matrix form this set of equations can be written 
as  

,fuK 
 

 (11) 

where the matrix  K   is known as the stiffness 

matrix and  f   is known as the load vector. 

Since  0i    for all elements that do not have 

node  i   as a node, it follows that this property of 

basis functions will result in the matrix  K   having 
a sparse structure or, with an appropriate ordering, 
a banded structure in which all nonzero entries is 
clustered around the main diagonal. 

3.1. Implementation of finite element method 

To solve Eq. (7), with the boundary conditions 
given by Eq. (8), we assume  

vf 
   (12) 

Equation (7) then becomes,  

.0vMvfvv 22     (13) 

The corresponding boundary conditions then 
become  

.0)(v,1)0(v,s)0(f 
   (14) 

The variational form associated with Eqs. (12) 
and (13) over a typical two node line element  

)y,y( 1ii    is given by  
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  ,0dyfv2
1iy
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   (16) 

where 1  and 2  are arbitrary test functions which 

can be considered as the variations of v and f, 
respectively. We assume the finite element 
solution over this element is of the form,  
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For Galerkin finite element solution approximation 
we use  
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Where  i   are the basis functions for a typical 

element  )y,y( 1ii    and they are defined as  
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Equations (15) and (16) will make a system of 
non linear simultaneous equations. Finite element 
formulation of Eqs. (15) and (16) will also generate 
a nonlinear set of algebraic equations. Eqs. (15) 
and (16) can be written in matrix form as, 
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where )f,v(gi  can be found by putting in the value 

of v and f from Eq. (17) in Eqs. (15) and (16). 

The domain of the problem is divided into a set 
of 200 elements of equal length. By incorporating 
the boundary conditions we obtain a set of 399 
simultaneous non linear algebraic equations 
having 399 unknowns. For the solution of this set 
of equations we used Newton's iterative method 
with an initial guess provided to it as 

.exp1)y(f y
 (21) 

Newton's iterative method is generally 
implemented in a two step procedure. First a 
vector  z   is found which will satisfy  

),()(J )k()k(
uGzu 

   (22) 

where  )(J )k(
u   is the Jacobian of  )( )k(

uG  . After 

this has been carried out the new approximation  
)1k( 

u  , can be obtained by 

.)k()1k(
zuu               (23) 

Newton's method is expected to give quadratic 
convergence, provided that a sufficiently good 
starting guess is given. 

4. Results and Discussion 

The graphs for the function  f  which 

corresponds to velocity component u  and  f  

that corresponds to velocity component v  are 
drawn against   for different values of the 

parameters s  and M   are shown in Figs. 1 and 2. 

 

Fig. 1a 

 

Fig. 1b 

Figure 1. Influence of MHD parameter  M   on the velocity 

components  f    and  f  . 

It is shown in Fig. 2(a) that the x  -component 

of velocity and boundary layer thickness decreases 
with an increase in the MHD parameter. However, 
the y -component of velocity decreases but 

boundary layer thickness increases by increasing 
the MHD parameter. The effects of suction 
parameter are quite similar to that of the MHD 
parameter and are shown in Figs. 2. The value of 
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skin friction coefficient is tabulated in table 1 under 
the influence of MHD and suction parameters. 

 

Fig. 2a 

 

Fig. 2b 

Figure 2. Influence of suction parameter  s   on the velocity 

components f   and f  . 

Table 1 elucidate that the magnitude of skin 
friction coefficient increases by increasing both 

MHD parameter  M   and suction parameter s  

Hence it is noted that at the surface of stretching 
sheet the more force is required to drag an MHD 
flow as compared to the hydrodynamic flow and 
this will cause a reduction in the boundary layer 
thickness. A similar phenomenon is observed for 
the suction velocity s . 

5. Concluding Remarks 

In this paper, the MHD viscous flow due to a 
porous stretching sheet is considered. The 
numerical solution is obtained using finite element 
method. The results are presented graphically and 
the effects of the emerging parameters are 
discussed. It is noted that the boundary layer 
thickness is reduced by introducing the MHD 
effects. 
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Table 1: Variation in  )0(f    for different values of M  and s . 

s M = 0.0 M = 0.5 M = 1.0 M = 1.5 

0.0 -1.00000 -1.08750 -1.36565 -1.72447 

1.0 -1.55490 -1.65316 -1.90426 -2.23727 

2.0 -2.27642 -2.35246 -2.55659 -2.84256 

3.0 -3.05033 -3.10817 -3.26929 -3.50621 

 


